使用无监督机器学习进行客户细分 -- 机器学习项目基础篇(11)

在今天的时代,公司努力工作,使他们的客户满意。他们推出新的技术和服务,以便客户可以更多地使用他们的产品。他们试图与每一个客户保持联系,以便他们能够相应地提供货物。但实际上,与每个人保持联系非常困难和不现实。因此,这里来使用客户细分
客户细分是指根据客户的相似特征、行为和需求对客户进行细分。这最终将在许多方面帮助公司。比如,他们可以推出产品或相应地增强功能。他们也可以根据自己的行为针对特定部门。所有这些都导致了公司整体市场价值的提升。

今天,我们将使用机器学习来实现客户细分的任务。

导入库

我们需要的库是:

  • Pandas -此库有助于以2D数组格式加载数据框。
  • Numpy - Numpy数组非常快,可以执行大型计算。
  • Matplotlib / Seaborn -此库用于绘制可视化。
  • Sklearn -该模块包含多个库,这些库具有预实现的功能,可以执行从数据预处理到模型开发和评估的任务。
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sb
 
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.cluster import KMeans
 
import warnings
warnings.filterwarnings('ignore')

导入数据集

用于任务的数据集包括客户的详细信息,包括他们的婚姻状况、他们的收入、购买的物品的数量、购买的物品的类型等。

df = pd.read_csv('new.csv')
df.head()

在这里插入图片描述

df.shape

输出:

(2240, 25)(2240, 25)

数据预处理

df.info()

在这里插入图片描述

df.describe().T

在这里插入图片描述

df['Accepted'] = df['Accepted'].str.replace('Accepted', '')

检查数据集中的空值。

for col in df.columns:
    temp = df[col].isnull().sum()
    if temp > 0:
        print(f'Column {
     col} contains 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

python收藏家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值