Python | Pandas中有效处理大数据集的6种方法

Pandas是一个强大的Python数据操作包,经常用于涉及数据分析和修改的工作。然而,标准的Pandas程序在处理大型数据集时可能会变得资源密集且效率低下。这篇文章中研究在Pandas中有效处理大数据集的方法。

处理大型数据集的问题

Pandas在处理小型数据集时是一个很好的工具,通常上限在2到3GB之间。对于大于此阈值的数据集,不建议使用Pandas。这是因为,如果数据集大小超过可用RAM,Pandas会在处理之前将完整的数据集加载到内存中。即使是较小的数据集也会出现内存问题,因为预处理和修改会创建DataFrame的副本。

尽管存在这些缺点,但通过使用特定的方法,Pandas可以用于在Python中处理更大的数据集。这些技术可以让你使用Pandas来分析数百万条记录,并在Python中有效地管理庞大的数据集。

如何在Python中处理大型数据集?

  1. 使用高效的数据类型:使用更高效的内存数据类型(例如,int 32代替int 64,float 32代替float 64)以减少内存使用。
  2. 加载较少的数据:例如使用pd.read_csv()中的usecols参数只加载必要的列,从而减少内存消耗。
  3. 采样:对于探索性数据分析或测试,请考虑使用数据集的样本而不是整个数据集。
  4. 分块:使用pd.read_csv()中的chunksize参数以较小的块读取数据集,迭代地处理每个块。
  5. 优化Pandas dtypes:在加载数据后,如果合适的话,使用astype方法将列转换为内存效率更高的类型。
  6. 使用Dask库:使用Dask,一个并行计算库,通过利用并行处理将Pandas工作流扩展到更大内存的数据集。

1. 使用高效的数据类型

在Pandas中减少内存使用需要使用高效的数据类型。例如,如果精度允许,可以使用float32甚至float16来代替标准的float64 dtype。与此类似,如果数据范围允许,整数列可以向下转换为更小的整数类型,如int8、int16或int32。
优点:显著减少内存占用,特别是对于大型数据集。
实现:当阅读数据时,可以使用pd.read_csv()或pd.read_sql()等函数来指定dtype参数。此外,可以使用astype()方法将现有列更改为更节省内存的类型。

示例:

import pandas as pd
 
# Define the size of the dataset
num_rows = 1000000  # 1 million rows
 
# Example DataFrame with inefficient datatypes
data = {
   'A': [1, 2, 3, 4],
        'B': [5.0, 6.0, 7.0, 8.0]}
df = pd.DataFrame(data)
 
# Replicate the DataFrame to create a larger dataset
df_large = pd.concat([df] * (num_rows // len(df)), ignore_index=True)
 
# Check memory usage before conversion
print("Memory usage before conversion:")
print(df_large.memory_usage().sum())
 
# Convert to more memory-efficient datatypes
df_large['A'] = pd.to_numeric(df_large['A'], downcast='integer')
df_large['B'] = pd.to_numeric(df_large['B'], downcast='float')
 
# Check memory usage after conversion
print("Memory usage after conversion:"
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

python收藏家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值