pandas大数据处理技巧

该博客探讨了如何检查和优化Pandas DataFrame的内存占用。通过查看不同数据类型的平均内存使用情况,发现object类型占用了最多内存。接着,将整数数据转换为无符号整数,减少了内存消耗。此外,对于重复值比例小于0.5的列,将其转换为类别类型进一步节省了内存。最后,对日期数据进行了转换。通过这些操作,成功地减少了DataFrame的总内存占用。

1.读取数据

 

2.查看内存占用情况

 

查看各种数据类型内存占用情况:

for dtype in ['float64','object','int64']:
    selected_dtype = gl.select_dtypes(include=[dtype])
    mean_usage_b = selected_dtype.memory_usage(deep=True).mean()
    mean_usage_mb = mean_usage_b / 1024 ** 2
    print("Average memory usage for {} columns: {:03.2f} MB".format(dtype,mean_usage_mb))
Average memory usage for float64 columns: 1.29 MB
Average memory usage for object columns: 9.51 MB
Average memory usage for int64 columns: 1.12 MB

 3.查看各种数据类型可取值的范围

import numpy as np
int_types = ["uint8", "int8", "int16","int32","int64"]
for it in int_types:
    print(np.iinfo(it))

 

4.计算各种数据类型的内存占用量

def mem_usage(pandas_obj):
    if isinstance(pandas_obj,pd.DataFrame):
        usage_b = pandas_obj.memory_usage(deep=True).sum()
    else: # we assume if not a df it's a series
        usage_b = pandas_obj.memory_usage(deep=True)
    usage_mb = usage_b / 1024 ** 2 # convert bytes to megabytes
    return "{:03.2f} MB".format(usage_mb)

gl_int = gl.select_dtypes(include=['int64'])
# http://pandas.pydata.org/pandas-docs/stable/generated/pandas.to_numeric.html
converted_int = gl_int.apply(pd.to_numeric,downcast='unsigned')

print(mem_usage(gl_int))
print(mem_usage(converted_int))
7.87 MB
1.48 MB

将dataframe进行数据转换

optimized_gl = gl.copy()

optimized_gl[converted_int.columns] = converted_int
optimized_gl[converted_float.columns] = converted_float

print(mem_usage(gl))
print(mem_usage(optimized_gl))

 

860.50 MB
803.61 MB

将星期数据进行编码 

 

将整形数据转换为无符号整形 

 

 对重复数据<0.5的数据进行编码

converted_obj = pd.DataFrame()

for col in gl_obj.columns:
    num_unique_values = len(gl_obj[col].unique())
    num_total_values = len(gl_obj[col])
    if num_unique_values / num_total_values < 0.5:
        converted_obj.loc[:,col] = gl_obj[col].astype('category')
    else:
        converted_obj.loc[:,col] = gl_obj[col]

 

 

此时的内存: 

 

 日期数据转换

 

 

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

樱花的浪漫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值