先上个图
这道题n最多只有10^9,用二分完全不会爆,不信看这里~
二分的效率非常高,适用于答案在一个固定范围内的题目,是所有算法里效率排名第二的,仅次于常数阶的算法
ps:算法效率从高到低分别为:O(1),O(log2 n),O(n),O(n log2 n),O(n*n),O(2的n次方),O(n!)
一条华丽的分割线
————————————————————————————————————
废话就不多说了,我们直入主题哈~
大部分人都知道小学奥数里有一类题:
在1~x中,有几个y的倍数?
这道题的答案就是x/y,因为每y个数里就有一个y的倍数。
而还有一种题是:
在1~x中,有几个y和z的倍数?
这道题的答案就是x/y+x/z -x/[y,z],Why?[y,z]表示求y和z的最小公倍数,因为有时有些数既是y的倍数,又是z的倍数,这就会导致这个数重复算了1次。
解题思路
1.暴力
时间复杂度:O(n+874999999) 注:874999999是在n是1000000000的情况下比n多的数,所以最大是n到n+这么多个
思想:从n到n+874999999循环每个ans,判断一下ans-(ans/3+ans/5-ans/15)是否>=n
评价:虽然我一开始不知道循环时要加多少,但我凭着直觉知道无情的OJ一定会让你 TLE的味道,我知道。。。
2.方程
时间复杂度:没估过
思路:x-(x/3+x/5-x/15)=n
评价:这是我比赛时想到的第二种方法,但后来发现不行。因为这里的x/3、x/5和x/15都要取整,而方程不能解决这一点。
3.二分
时间复杂度:O(log2 n),是肯定不会超的,前面讲过了
思路:我们直接二分ans,每次判断(跟上面一样),如果当前这个mid符合要求,说明区间还可以更小,否则就要更大。
评价:正确方法
上代码
//郭骏羽正版水印,侵权必究
#include<stdio.h>
#include<iostream>
#include<iomanip>
typedef unsigned long long u;
u n;
int main() {
//freopen("moobuzz.in","r",stdin),freopen("moobuzz.out","w",stdout);
std::cin>>n;
u l=1,r=1e10;
while(l<=r) {
u mid=(l+r)/2;
if(mid-(mid/3+mid/5-mid/15)>=n) r=mid-1;
else l=mid+1;
}
std::cout<<l;
}
还没走?既然已经看到这了,那给个赞吧!谢谢!Thanks♪(・ω・)ノ