1、根据博客链接,将tensorrt目录下的lib文件夹下的dll文件都复制到bin目录下
但是没有效果,报错依旧
原博客链接:
https://blog.csdn.net/sadjhaksdas/article/details/136455303
但是在评论区发现另一个回复,说是cudnn问题
于是开始折腾cudnn,cuda也都换了一遍,目前我的配置是
cuda12.5 cudnn 8.9.0 tensorrt 8.6.1.6,为啥要用cudnn8.9.0呢是因为在nvidia的tensorrt官网瞄了一眼,说是trt8.6.1支持cundnn8.9.0
一开始换完了cudnn,各种重启还是不行
最后根据链接进行了cudnn的配置,同时将cudnn的bin目录添加到系统的path环境变量里
链接如下:
https://www.cnblogs.com/laugh12321/p/17830096.html
主要依据如图所示进行cudnn的配置
注意按照博主所说的如图所示进行tensorrt的安装
比如说我的annconda虚拟环境是python3.10
那么就进入到下图所示的目录中,执行pip tensorrt-8.6.1-cp310-none-win_amd64.whl来安装trt
上述捣鼓完之后,执行原来报错的命令
E:\TensorRT-8.6.1.6.Windows10.x86_64.cuda-12.0\TensorRT-8.6.1.6\bin\trtexec.exe --onnx=C:\Users\DELL\Downloads\yolov5-master333\TensorRT-YOLO-main\output\gaiban_det17_best.onnx --saveEngine=modelv5_861.engine
成功将onnx转换成了engine