LHY机器学习
文章平均质量分 87
黎明沐白
这个作者很懒,什么都没留下…
展开
-
lhy机器学习笔记-5
文章目录lhy机器学习笔记-5局部最小值local minimal和鞍点 saddle pointbatch批次 and momentum动量momentum: **对抗 minimal 和 saddle point 的方法**adaptive learning rate(optimizer)方法1:Adagrad方法2:RMSProplearning rate schedulingclassificationbatch normalizationbatch normalization的 Testing:为原创 2021-09-20 11:36:44 · 433 阅读 · 0 评论 -
LHY机器学习笔记-4
文章目录lhy机器学习笔记-4深度学习三个步骤神经网络完全连接前反馈神经网络 FC矩阵运算模型评价选取最优函数Backpropagation以单个神经元为例考虑forward passbackward passsummarylhy机器学习笔记-4深度学习三个步骤神经网络 -> 模型评估 -> 选择最优函数神经网络神经网络可以有很多不同的连接方式,这样就会产生不同的结构(structure)神经网络中的所有的 权重 和 偏置 构成了 神经网络的参数 θ完全连接前反馈神经网络 FC前原创 2021-09-18 22:49:51 · 443 阅读 · 0 评论 -
LHY机器学习笔记-3
文章目录误差来源variancebiascross validation梯度下降tuning learning rate误差来源variance简单的模型比较不容易受样本数据的影响,简单的模型variance较小,复杂的模型有比较大的variancebias简单的模型有较大的bias,复杂的模型有较小的biaserror来源于 bias较大 —— underfittingerror来源于 variance较大 —— overfitting如果模型不能在训练集上得到较好的效果 ➡️ lar原创 2021-09-17 16:08:56 · 132 阅读 · 0 评论 -
LHY机器学习笔记-2
文章目录Regression 回归模型步骤选择模型模型评估筛选最佳模型——梯度下降验证模型好坏过拟合问题模型优化Regression 回归模型步骤step1:模型假设,选择模型框架(线性模型)step2:模型评估,如何判断众多模型的好坏(损失函数)step3:模型优化,如何筛选最优的模型(梯度下降)选择模型线性模型: y=b+∑wixi y = b + \sum w_ix_i y=b+∑wixi 形如其中, x_i 为 特征,w_i 是 各个特征权重, b 是 偏置项模型评估原创 2021-09-15 11:35:19 · 262 阅读 · 0 评论 -
LHY机器学习笔记-1
文章目录机器学习介绍寻找function的框架(Framework)机器学习相关技术regression 回归classification 分类learning map机器学习介绍人工智慧是我们想要达成的目标,而机器学习是想要达成目标的手段深度学习就是机器学习的其中一种方法machine learning 约等于 寻找一个function,要让机器具有一个能力,这种能力是根据你提供给他的资料,它去寻找出我们要寻找的function寻找function的框架(Framework)准备一个原创 2021-09-13 08:40:28 · 287 阅读 · 0 评论