LHY机器学习笔记-2

Regression 回归

模型步骤

  • step1:模型假设,选择模型框架(线性模型)
  • step2:模型评估,如何判断众多模型的好坏(损失函数
  • step3:模型优化,如何筛选最优的模型(梯度下降

选择模型

线性模型: y = b + ∑ w i x i y = b + \sum w_ix_i y=b+wixi 形如

其中, x_i 为 特征,w_i 是 各个特征权重, b 是 偏置项

模型评估

引入损失函数 通过量化 进化后的CP值(实际值)与模型预测的CP值 的 差,来评估模型

L ( f ) = ∑ n = 1 10 ( y ^ n − f ( x c p n ) ) 2 L(f) = \sum_{n=1}^{10}( \hat y^n - f(x^n_{cp}) )^2 L(f)=n=110(y^nf(xcpn))2

L ( w , b ) = ∑ n = 1 10 ( y ^ n − ( b + w ⋅ x c p n ) ) 2 L(w,b) = \sum_{n=1}^{10}(\hat y^n - (b + w·x^n_{cp}))^2 L(w,b)=n=110(y^n(b+wxcpn))2

规定损失函数的值越小,模型效果越好

筛选最佳模型——梯度下降

目标:找到合适的参数 $ w, b $ 使得损失函数 $ f $ 的值最小
f ∗ = a r g min ⁡ f L ( f ) f^* = arg \min\limits_{f}L(f) f=argfminL(f)

w ∗ , b ∗ = a r g min ⁡ w , b L ( w , b ) = a r g min ⁡ w , b ∑ n = 1 10 ( y ^ n − ( b + w ⋅ x c p n ) ) 2 w^*, b^* = arg \min\limits_{w,b}L(w, b) = arg \min\limits_{w,b}\sum_{n=1}^{10}(\hat y^n - (b + w·x_{cp}^n))^2 w,b=argw,bminL(w,b)=argw,bminn=110(y^n(b+wxcpn))2

方法:梯度下降算法

  • 步骤1:随机选取一个 w 0 w^0 w0
  • 步骤2:计算微分,也就是当前的斜率,根据斜率来判定移动的方向
    • 大于0向右移动(增加w)
    • 小于0向左移动(减少w)
  • 步骤3:根据学习率移动
  • w 1 ← w 0 − η d L d W ∣ w = w 0 w^1 \leftarrow w^0 - \eta \frac{dL}{dW} |_{w=w^0} w1w0ηdWdLw=w0
  • 重复步骤2和步骤3,直到找到最低点

对于线性模型其损失函数是凸函数,因此 可以通过梯度下降方法找到其最低点

验证模型好坏

选取测试集,将训练好的模型应用到测试集数据上,计算其损失函数的值

过拟合问题

一次模型不好,选取一元多次模型对数据进行拟合,可能会出现过拟合现象

课程案例中三次以上的模型即会出现过拟合现象(在测试集上损失函数的值过大)

出现过拟合的原因:

​ 每一个模型结果都是一个集合,5次模型包 ⊇ \supseteq 4次模型 ⊇ \supseteq 3次模型,所以在4次模型里面找到的最佳模型,肯定不会比5次模型里面找到更差

模型优化

  1. 考虑更多参数、更多输入数据

  2. 正则化方法
    y = b + ∑ w i b i y = b + \sum w_i b_i y=b+wibi

    L = ∑ n ( y ^ n − ( b + ∑ w i x i ) ) 2 + λ ∑ ( w i ) 2 L = \sum_n(\hat y^n - (b + \sum w_i x_i))^2 + \lambda\sum(w_i)^2 L=n(y^n(b+wixi))2+λ(wi)2

引入正则化,目的是使得 拟合曲面 变得 平滑

  • w 越小,表示 function 较平滑的, function输出值与输入值相差不大
  • 在很多应用场景中,并不是 w 越小模型越平滑越好,但是经验值告诉我们 w 越小大部分情况下都是好的
  • b 的值接近于0 ,对曲线平滑是没有影响

P.S. 本次笔记练习了如何使用LaTeX去打公式,hhh

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值