风速Weibull分布和光伏Beta分布之运用场景法描述分布式电源的出力的不确定性

文章介绍了如何运用Weibull和Beta分布建立风速和光照强度模型,通过分布式电源出力公式转化为确定性问题,然后采用蒙特卡洛模拟和Kmeans聚类算法将样本划分为典型场景,以解决随机潮流计算中的不确定性问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

概述

运用场景法来描述分布式电源出力的不确定性,采用Weibull分布和Beta分布分别构建风速和光照强度模型,通过分布式电源出力公式,将随机问题转换为确定性问题;然后采用蒙特卡洛模拟法抽样和Kmeans聚类算法将样本聚类成3个典型场景。

1  分布式电源出力模型

1.1  风电机组出力模型

针对风速建模主要有Weibul分布、Rayleigh分布、Gamma分布[1]等。

选择某地风电站全年风速数据样本,分别采用上述三种分布对风速数据采用线性回归进行拟合,拟合结果如图1(1)所示,在图中尾部可以清晰反映出Weibull分布拟合的效果良好。

采用风速近似服从Weibull分布,即

                      

                      

式中:v为风速(m/s);λρ为Weibull分布的两个参数。参数的确定由实际数据进行拟合得到。

在建立了合适的风速模型后,根据风速数据换算出风电机组有功出力

            

式中:vci为切入风速;vco为切出风速;vr为风电机组额定风速;Pr为风电机组的额定输出功率。

1.2  太阳能光伏电站出力模型

针对太阳光照强度进行建模,应用最为广泛的有Beta分布和正态分布。

选择某地光伏电站全年6:00-17:00太阳光照强度数据样本,用上述两种分布采用线性方法进行拟合,结果如图1(2)所示,可以清晰的反映出Beta分布拟合太阳光照强度要优于正态分布。

本文采用太阳光照强度近似服从Beta分布,即

          

          

式中:r为光照强度(W/m2);Γ()为Gamma函数;rmax为最大光照强度;αβ为Beta分布的两个参数。参数的确定由实际数据进行拟合得到。

在确定太阳光照强度之后,可得太阳能光伏机组的输出功率

                              

                      

式中:A为每块太阳能电池板的面积;η为太阳能转换为电能的效率。

(1)风速

(2)光照强度

图1  风速与光照强度拟合图

2  基于场景法的随机潮流计算

2.1  场景生成

首先利用蒙特卡洛模拟法对上文立的模型进行1 000次抽样,得到a×b矩阵N,其中a为抽样次数(1 000),b为24(一天等分24个时间段),并将每次抽样的结果定义为场景,即生成了1 000个分布式电源的出力场景。分布式接入配电网的数量很少,且DG的额定功率较小,不参与电压的调节,同时DG出力维持在额定功率以下;故DG以PQ节点(功率因数为0.9)的形式接入配电网。

2.2  基于手肘法与K均值聚类算法场景缩减

由于抽样数目过多,为更好解决精度和速度带来问题,对所生成的样本采用K均值聚类算法处理得到典型的k个场景。步骤如下:

a) 在矩阵N中随机选取k行作为初始聚类中心得到k×b矩阵Ml,其中k=3,初始迭代次数l=1;光样本数据类比于此。

b) 计算每组样本数据与每组聚类中心的距离

   式中Dij为聚类中心矩阵MljMl(j)中心 与样本矩阵Ni组数据N(i)之间的距离。并将每组样本数据归入与之距离最近的簇W(j)中,每个簇W(j)所含样本数为c(j)。

c) 按照下式计算每组所有样本均值向量来更新原来每组的聚类中心:

                         

d) 如不满足下式重复上述步骤,直至满足。

               

            

e) 则聚类后风场景概率为

                     

采用同样方法得到光场景概率Isolar,j(j=1,2,3)。

f) 综合场景概率

 然而K均值聚类算法有一个主要缺陷:需要确定k值,本文先采用手肘法则将值确定,再使用上述流程进行场景聚类。手肘法则的核心指标是误差平方和(sum of squares due to error,SSE),定义为:

             

在此基础上,还有轮廓系数(Silhouette)[17]和Calinski-Harabasz(CH)指标[18]。轮廓系数和CH指标则是考虑簇内样本的紧密性和不同簇之间的可分性。轮廓系数

                               

式中:A为一个样本点到所属簇中其他样本点的平均距离;B为一个样本点到其他簇中所有样本点平均距离的最小值。

CH指标:

式中z为整个数据集的中心。

1 000个时间序列场景聚类为5个场景对应概率见表2。

表2  5个场景下对应的概率

场景

风场景

概率

光场景

概率

概率

1

0.310

0.425

0.311

2

0.411

0.251

0.328

3

0.262

0.309

0.285

4

0.221

0.201

0.317

5

0.251

0.319

0.242

 3  运行结果

参考文献

[1]李慧,孙宏斌,张芳.风电场风速分布模型研究综述[J].电工电能新技术,2014,33(8):62-66.
[2]管霖,陈旭,吕耀棠, 等.适用于电网规划的光伏发电概率模型及其应用[J].电力自动化设备,2017,37(11):1-7.
[3]方斯顿,程浩忠,宋越, 等.基于样条重构和准蒙特卡洛的随机潮流方法[J].高电压技术,2015,41(10):3447-3453.
[4]齐晖,程韧俐,史军,等. 采用最优场景法求解含风电的无功优化模型[J]. 广东电力,2019,32(6):18-28. 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

扬辰鑫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值