概述
运用场景法来描述分布式电源出力的不确定性,采用Weibull分布和Beta分布分别构建风速和光照强度模型,通过分布式电源出力公式,将随机问题转换为确定性问题;然后采用蒙特卡洛模拟法抽样和Kmeans聚类算法将样本聚类成3个典型场景。
1 分布式电源出力模型
1.1 风电机组出力模型
针对风速建模主要有Weibul分布、Rayleigh分布、Gamma分布[1]等。
选择某地风电站全年风速数据样本,分别采用上述三种分布对风速数据采用线性回归进行拟合,拟合结果如图1(1)所示,在图中尾部可以清晰反映出Weibull分布拟合的效果良好。
采用风速近似服从Weibull分布,即
式中:v为风速(m/s);λ、ρ为Weibull分布的两个参数。参数的确定由实际数据进行拟合得到。
在建立了合适的风速模型后,根据风速数据换算出风电机组有功出力
式中:vci为切入风速;vco为切出风速;vr为风电机组额定风速;Pr为风电机组的额定输出功率。
1.2 太阳能光伏电站出力模型
针对太阳光照强度进行建模,应用最为广泛的有Beta分布和正态分布。
选择某地光伏电站全年6:00-17:00太阳光照强度数据样本,用上述两种分布采用线性方法进行拟合,结果如图1(2)所示,可以清晰的反映出Beta分布拟合太阳光照强度要优于正态分布。
本文采用太阳光照强度近似服从Beta分布,即
式中:r为光照强度(W/m2);Γ()为Gamma函数;rmax为最大光照强度;α、β为Beta分布的两个参数。参数的确定由实际数据进行拟合得到。
在确定太阳光照强度之后,可得太阳能光伏机组的输出功率
式中:A为每块太阳能电池板的面积;η为太阳能转换为电能的效率。
(1)风速
(2)光照强度
图1 风速与光照强度拟合图
2 基于场景法的随机潮流计算
2.1 场景生成
首先利用蒙特卡洛模拟法对上文立的模型进行1 000次抽样,得到a×b矩阵N,其中a为抽样次数(1 000),b为24(一天等分24个时间段),并将每次抽样的结果定义为场景,即生成了1 000个分布式电源的出力场景。分布式接入配电网的数量很少,且DG的额定功率较小,不参与电压的调节,同时DG出力维持在额定功率以下;故DG以PQ节点(功率因数为0.9)的形式接入配电网。
2.2 基于手肘法与K均值聚类算法场景缩减
由于抽样数目过多,为更好解决精度和速度带来问题,对所生成的样本采用K均值聚类算法处理得到典型的k个场景。步骤如下:
a) 在矩阵N中随机选取k行作为初始聚类中心得到k×b矩阵Ml,其中k=3,初始迭代次数l=1;光样本数据类比于此。
b) 计算每组样本数据与每组聚类中心的距离
式中Dij为聚类中心矩阵Ml第j组Ml(j)中心 与样本矩阵N第i组数据N(i)之间的距离。并将每组样本数据归入与之距离最近的簇W(j)中,每个簇W(j)所含样本数为c(j)。
c) 按照下式计算每组所有样本均值向量来更新原来每组的聚类中心:
d) 如不满足下式重复上述步骤,直至满足。
e) 则聚类后风场景概率为
采用同样方法得到光场景概率Isolar,j(j=1,2,3)。
f) 综合场景概率
然而K均值聚类算法有一个主要缺陷:需要确定k值,本文先采用手肘法则将值确定,再使用上述流程进行场景聚类。手肘法则的核心指标是误差平方和(sum of squares due to error,SSE),定义为:
在此基础上,还有轮廓系数(Silhouette)[17]和Calinski-Harabasz(CH)指标[18]。轮廓系数和CH指标则是考虑簇内样本的紧密性和不同簇之间的可分性。轮廓系数
式中:A为一个样本点到所属簇中其他样本点的平均距离;B为一个样本点到其他簇中所有样本点平均距离的最小值。
CH指标:
式中z为整个数据集的中心。
1 000个时间序列场景聚类为5个场景对应概率见表2。
表2 5个场景下对应的概率
场景 | 风场景 概率 | 光场景 概率 | 概率 |
1 | 0.310 | 0.425 | 0.311 |
2 | 0.411 | 0.251 | 0.328 |
3 | 0.262 | 0.309 | 0.285 |
4 | 0.221 | 0.201 | 0.317 |
5 | 0.251 | 0.319 | 0.242 |
3 运行结果
参考文献
[1]李慧,孙宏斌,张芳.风电场风速分布模型研究综述[J].电工电能新技术,2014,33(8):62-66.
[2]管霖,陈旭,吕耀棠, 等.适用于电网规划的光伏发电概率模型及其应用[J].电力自动化设备,2017,37(11):1-7.
[3]方斯顿,程浩忠,宋越, 等.基于样条重构和准蒙特卡洛的随机潮流方法[J].高电压技术,2015,41(10):3447-3453.
[4]齐晖,程韧俐,史军,等. 采用最优场景法求解含风电的无功优化模型[J]. 广东电力,2019,32(6):18-28.