在 Python 中,列表和元组中的元素是有顺序的,但是由于元组不可变,所以一般我们涉及到打乱操作,都是针对的列表。
在深度学习中,由于原始训练数据可能存在顺序性,当我们分批成 mini batch 进行学习的时候,后面的数据会对系数影响更大,所以这种顺序性不是我们想要的,我们希望数据的分布更为均匀,所以“打乱顺序”操作用的非常多。
我们需要用到 random 模块下的 shuffle() 方法。
程序实现
>>> import random
>>> list_old = [1, 2, 3, 'A'