变化检测
文章平均质量分 79
赫瑟尔
个人学习记录
展开
-
基于图像重建损失的无监督变化检测
阅读翻译:Unsupervised Change Detection Based on Image Reconstruction LossAbstract:为了训练变化检测器,使用在同一区域的不同时间拍摄的双时图像。然而,收集标记的双时相图像既昂贵又耗时。为了解决这个问题,已经提出了各种无监督的变化检测方法,但它们仍然需要未标记的双时态图像。在本文中,我们提出了基于图像重建损失的无监督变化检测,仅使用未标记的单个时间单个图像。图像重建模型被训练以通过接收源图像和光度变换的源图像作为一对来重建原始源图原创 2022-05-04 14:24:09 · 5163 阅读 · 5 评论 -
用于跨域变化检测的端到端监督域适应框架
An End-to-end Supervised Domain Adaptation Framework for CrossDomain Change Detection文献代码摘要:变化检测是遥感图像分析中一项至关重要但极具挑战性的任务,随着深度学习的快速发展,已经取得了很大进展。然而,现有的大多数基于深度学习的变化检测方法都试图精心设计具有强大特征表示的复杂神经网络,却忽略了由时变土地覆盖变化引起的普遍域偏移,包括事件前后的亮度波动和季节变化图像,从而产生次优结果。在本文中,我们提出了一原创 2022-05-02 11:54:57 · 1658 阅读 · 0 评论 -
RDP-Net:用于变化检测的区域细节保留网络
RDP-Net: Region Detail Preserving Network for Change Detection摘要变化检测(CD)是一种必不可少的地球观测技术。它捕捉地物的动态信息。随着深度学习的兴起,神经网络(NN)在 CD 中显示出巨大的潜力。然而,当前的 NN 模型引入了在学习过程中丢失细节信息的骨干架构。此外,当前的 NN 模型参数繁多,这阻碍了它们在无人机等边缘设备上的部署。在这项工作中,我们通过提出 RDP-Net 来解决这个问题:一个用于 CD 的区域细节保留网络。我们提出了原创 2022-04-20 14:52:08 · 3575 阅读 · 0 评论 -
PSPNet----多尺度平均池化 (MSAP) 卷积网络阅读笔记
SAR IMAGE CHANGE DETECTION METHOD VIA A PYRAMID POOLING CONVOLUTIONAL NEURAL NETWORK,IGARSS2020基于金字塔池卷积神经网络的SAR图像变化检测方法摘要:在合成孔径雷达 (SAR) 图像变化检测中,利用受散斑影响的噪声差分图像的变化信息是非常具有挑战性的。在本文中,我们提出了一种新颖的多尺度平均池(MSAP)网络来利用噪声差异图像中的变化信息。与传统的只有一个尺度池化核的卷积网络不同,在所提出的方法中,在卷积网络原创 2022-04-10 13:07:58 · 4572 阅读 · 0 评论 -
变化检测 log-ratio 算子
log-ratio 算子import numpy as npimport matplotlib.pyplot as pltfrom skimage import datafrom skimage import io# 读入图像,并转化为 float 格式im1 = io.imread('D:\pic\Andasol_09051987.bmp')[:,:,0].astype(np.float64)im2 = io.imread('D:\pic\Andasol_09122013.bmp')[:,原创 2021-07-19 19:02:08 · 1115 阅读 · 0 评论 -
读书笔记:SAFNet
文献待写代码部分(291, 306, 1)torch.Size([20220, 1, 7, 7])torch.Size([5055, 1, 7, 7])torch.Size([89046, 1, 7, 7])Creating dataloader[Epoch: 1] [loss avg: 62.1554] [current loss: 0.1116]98.22Save model![Epoch: 2] [loss avg: 9.4708] [current loss:原创 2022-03-20 17:41:26 · 4274 阅读 · 1 评论 -
读书笔记:基于Transformer的 Siamese 网络用于变化检测
摘要:本文提出了一种基于变压器的连体网络架构(缩写为 ChangeFormer),用于从一对共同配准的遥感图像中进行变化检测(CD)。与最近基于全卷积网络 (ConvNets) 的 CD 框架不同,所提出的方法在 Siamese 网络架构中将分层结构的 Transformer 编码器与多层感知 (MLP) 解码器相结合,以有效地渲染所需的多尺度远程细节获得准确的 CD。在两个 CD 数据集上的实验表明,所提出的端到端可训练 ChangeFormer 架构比以前的同类架构实现了更好的 CD 性能。#文章原创 2022-03-18 21:54:46 · 2251 阅读 · 6 评论 -
读书笔记:使用Transformers的遥感图像变化检测
读书笔记:Remote Sensing Image Change Detection with Transformers文章:https://ieeexplore.ieee.org/abstract/document/9491802代码:https://github.com/justchenhao/BIT_CD摘要:现代变化检测(CD)通过深度卷积强大的判别能力取得了显着的成功。然而,由于场景中物体的复杂性,高分辨率遥感 CD 仍然具有挑战性。具有相同语义概念的对象可能在不同时间和空间位置表现出不同的原创 2022-03-08 15:22:59 · 8089 阅读 · 18 评论