SAR IMAGE CHANGE DETECTION METHOD VIA A PYRAMID POOLING CONVOLUTIONAL NEURAL NETWORK,IGARSS2020
基于金字塔池卷积神经网络的SAR图像变化检测方法
摘要
:在合成孔径雷达 (SAR) 图像变化检测中,利用受散斑影响的噪声差分图像的变化信息是非常具有挑战性的。在本文中,我们提出了一种新颖的多尺度平均池(MSAP)网络来利用噪声差异图像中的变化信息。与传统的只有一个尺度池化核的卷积网络不同,在所提出的方法中,在卷积网络中配备了多尺度池化核,以从差异图像中获取变化区域的空间上下文信息。最后,我们在四个具有挑战性的双时相 SAR 图像数据集上验证了我们提出的方法。实验结果表明,我们提出的方法获得的差异图优于其他最先进的方法。
最近,完全卷积神经网络 [6] 已成功用于图像语义分割,其中池化层可以利用图像空间结构的鲁棒特征。受这种精神的启发,它们已被广泛用于利用噪声差异图像中的变化区域。龚等人[7]首次提出深度神经网络对SAR图像变化检测。高等人[8]提出了一种基于主成分分析的简单卷积网络,称为 PCA-Net,用于 SAR 图像变化检测。王等人[9]提出了一种有监督的 PCA-Net 方法,其中在参考形态结构的指导下选择训练样本。然而,在大多数传统的卷积网络中,所有池化内核都具有相同的大小,并且通常随后使用池化算子来利用更大范围的空间上下文。最近,赵等人[10]提出了一个金字塔场景解析网络,它通过金字塔池化层聚合各种大小的上下文来利用全局空间上下文信息。金等人[11]开发了一个用于对象分割的具有金字塔池化层的 U-Net。
受此想法的启发,在本文中,我们提出了一种用于 SAR 图像变化检测的多尺度平均池化 (MS