An End-to-end Supervised Domain Adaptation Framework for CrossDomain Change Detection
摘要:
变化检测是遥感图像分析中一项至关重要但极具挑战性的任务,随着深度学习的快速发展,已经取得了很大进展。然而,现有的大多数基于深度学习的变化检测方法都试图精心设计具有强大特征表示的复杂神经网络,却忽略了由时变土地覆盖变化引起的普遍域偏移,包括事件前后的亮度波动和季节变化图像,从而产生次优结果。在本文中,我们提出了一种用于跨域变化检测的端到端监督域自适应框架,即 SDACD,以有效缓解双时相图像之间的域偏移,以实现更好的变化预测。具体来说,我们的 SDACD 通过监督学习从图像和特征角度呈现协作适应。图像适应利用具有循环一致性约束的生成对抗学习来执行跨域样式转换,以双边生成方式有效地缩小域差距。在特征适应方面,我们提取域不变特征来对齐特征空间中的不同特征分布,这可以进一步减少跨域图像的域间隙。为了进一步提高性能,我们结合了三种类型的双时图像进行最终变化预测,包括初始输入双时图像和来自事件前和事件后域的两个生成的双时图像。对两个基准的广泛实验和分析证明了我们提出的框架的有效性和普遍性。值得注意的是,我们的框架将几个具有代表性的基线模型推向了新的 StateOf-The-Art 记录,在 CDD 和 WHU 构建数据集上分别达到了 97.34% 和 92.36%。源代码和模型可在 https://github.com/Perfect-You/SDCD 公开获得。
关键词:变化检测,监督域适应,图像适应,特征适应。
1 Introduction
变化检测(CD)旨在识别同一地理区域的双时相图像之间的地理元素的显着差异,以注册的双时相图像作为输入,输出逐像素的变化图。这一基础但重要的遥感任务由于其在城市化监测[1]、资源环境监测[2]、灾害评估[3]等方面的广泛应用,逐渐成为计算机视觉界的一个活跃话题。许多优秀的方法已经由于高分辨率遥感图像的轻松获取和深度学习的成功,最近被提出。然而,由于地理元素在不同时期的复杂性和异质性,这项任务中的许多问题仍然是开放和具有挑战性的。
在过去的几十年中,已经提出了多种传统的变化检测方法,可以分为四类:
1)基于代数的方法:直接对注册的双时态图像进行通道代数运算,包括图像差分、图像回归,变