[洛谷P4777]扩展CRT

280 篇文章 1 订阅
4 篇文章 0 订阅

题目

传送门 to luogu

思路

板题讲什么思路啊! 首先重新定义一下变量名:

{ x ≡ c 1 ( m o d m 1 ) x ≡ c 2 ( m o d m 2 ) x ≡ c 3 ( m o d m 3 ) … x ≡ c n ( m o d m n ) \begin{cases}x\equiv c_1\pmod{m_1}\\ x\equiv c_2\pmod{m_2}\\ x\equiv c_3\pmod{m_3}\\ \dots\\ x\equiv c_n\pmod{m_n} \end{cases} xc1(modm1)xc2(modm2)xc3(modm3)xcn(modmn)

普通版

就是 m m m 两两互质的情况。

考虑像拉格朗日插值一样一项一项构造:

i i i 项用来满足第 i i i 个方程,必然有 ω i = ∏ j ≠ i m j \omega_{i}=\prod_{j\ne i} m_j ωi=j=imj 这一项。考虑将 c i c_i ci 乘进去,那必须有一个 t t t 使得 t ⋅ ω i ≡ 1 ( m o d m i ) t\cdot \omega_{i}\equiv 1\pmod{m_i} tωi1(modmi) 。这不就是求个逆元吗?

ω i − 1 \omega_{i}^{-1} ωi1 ω i \omega_{i} ωi 在模 m i m_i mi 意义下的逆元,则有: x = ∑ i = 1 n c i ω i ω i − 1 x=\sum_{i=1}^{n}c_i\omega_{i}\omega_{i}^{-1} x=i=1nciωiωi1

还可以优化,记 M = ∏ i = 1 n m i M=\prod_{i=1}^{n}m_i M=i=1nmi ,则 x = ∑ i = 1 n c i M m i ( M m i ) − 1 x=\sum_{i=1}^{n}c_i\frac{M}{m_i}\left(\frac{M}{m_i}\right)^{-1} x=i=1ncimiM(miM)1 。代码就不贴了吧?

扩展版

要是 m i m_i mi 不是两两互质怎么办?

要是你想到了通过将 x x x 扩倍啥的让它们不再互质,恭喜你 你完事儿了

正解是 合并两个方程,直到只有一个方程。假定这两个方程分别是 x ≡ c ( m o d m ) x\equiv c\pmod{m} xc(modm) x ≡ C ( m o d M ) x\equiv C\pmod{M} xC(modM)

发现 x ≡ c ( m o d m ) x\equiv c\pmod{m} xc(modm) 等价于 x = k m + c ( k ∈ Z ) x=km+c(k\in \mathbb{Z)} x=km+c(kZ) ,尝试对这两个方程进行等价变换: x = a M + C = b m + c x=aM+C=bm+c x=aM+C=bm+c

后面两项相等,等价于: b m − a M = C − c bm-aM=C-c bmaM=Cc

因为 m , c , M , C m,c,M,C m,c,M,C 都是已知,假设得到一个特解 { a = a 0 b = b 0 \begin{cases}a=a_0\\b=b_0\end{cases} {a=a0b=b0 ,有通解公式: a = a 0 + k × m d ⇔    a M = a 0 M + k × m M d a=a_0+k\times \frac{m}{d}\\ \Leftrightarrow\;aM=a_0M+k\times \frac{mM}{d} a=a0+k×dmaM=a0M+k×dmM

毕竟 M ≠ 0 M\ne 0 M=0 嘛。将该式带回 x = a M + C x=aM+C x=aM+C 中得到: x = a 0 M + C + k × m M d x=a_0M+C+k\times \frac{mM}{d} x=a0M+C+k×dmM

既然 k k k 是变量,写成同余形式: x ≡ a 0 M + C ( m o d m M d ) x\equiv a_0M+C\pmod{\frac{mM}{d}} xa0M+C(moddmM)

不要看到有分数线就觉得是小数, m M d \frac{mM}{d} dmM 其实就是 n n n m m m 的最小公倍数,肯定是整数。

对了, a 0 a_0 a0 怎么算?在 b m − a M = C − c bm-aM=C-c bmaM=Cc 的方程中,好像只有 a a a b b b 是未知数—— e x g c d \mathrm{exgcd} exgcd 即可。要是 a a a 无解, x x x 也无解。

代码

#include <cstdio>
#include <iostream>
#include <vector>
using namespace std;
typedef __int128 LL; // 防爆措施
inline LL readint(){
	LL a = 0; char f = 1, c = getchar();
	if(c == EOF) return EOF;
	while(c < '0' or c > '9')
		(c == '-' and (f = -1)), c = getchar();
	while('0' <= c and c <= '9')
		a = (a<<3)+(a<<1)+(c^48), c = getchar();
	return a*f;
}

LL exgcd(LL a, LL b, LL &x, LL &y){
	if(not b){
		x = 1, y = 0; return a;
	}
	LL d = exgcd(b, a%b, y, x);
	y -= (a/b)*x;
	return d;
}

LL exCRT(int n, LL c[], LL m[]){
	LL M = m[1], C = c[1];
	for(int i=2; i<=n; ++i){
		LL a, b, r = C-c[i];
		// bm-aM = C-c
		LL d = exgcd(m[i], M, b, a);
		if(r%d != 0)// no solution
			return -1;
		a = r/d*(-a); // 我们得到的是-a
		C = a*M+C; M = M/d*m[i]; C %= M;
	}
	return (C+M)%M;
}

const int MaxN = 100000;
int n; LL c[MaxN+5], m[MaxN+5];
int main(){
	while(~scanf("%d", &n)){
		for(int i=1; i<=n; ++i)
			m[i] = readint(), c[i] = readint();
		printf("%lld\n",exCRT(n, c, m));
	}
    return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值