【学习笔记】群论入门

由于博主水平太低,很多地方含糊不清,并且符号未经声明。很抱歉。

参考了 2020 \text{2020} 2020集训队论文太阳神的博客、正睿课件。

基础群论

一般用 G G G 表示一个群,定义的二元运算是乘法。

群:满足封闭性、结合律、单位元存在性、逆存在性。

阶:群 G G G 的阶就是其大小 ∣ G ∣ |G| G 。元素 a a a 的阶为 min ⁡ n ∈ N +    s.t.    a n = ϵ \min n\in\N^+\;\text{s.t.}\;a^n=\epsilon minnN+s.t.an=ϵ(单位元)。

子群: H ⫅ G H\subseteqq G HG 满足 H H H 为群。记为 H ⩽ G H\leqslant G HG

生成子群:若 S ⫅ G S\subseteqq G SG S ≠ ∅ S\ne\varnothing S=,则包含 S S S 的极小子群为其生成子群 ⟨ S ⟩ \langle S\rangle S

陪集:设 H ⩽ G H\leqslant G HG,定义 H a = { h a    ∣    h ∈ H } Ha=\{ha\;|\;h\in H\} Ha={hahH} H H H G G G 中的右陪集。类似可定义左陪集。

陪集分解:设 a , b ∈ G ,    H ⩽ G a,b\in G,\;H\leqslant G a,bG,HG,则 a ∈ H b ⇔ H a = H b ⇔ a b − 1 ∈ H a\in Hb\Leftrightarrow Ha=Hb\Leftrightarrow ab^{-1}\in H aHbHa=Hbab1H 。以此为等价关系,可分解为若干等价类。

Lagrange \text{Lagrange} Lagrange 定理:显然 ∣ H a ∣ = ∣ H ∣ |Ha|=|H| Ha=H,故 ∣ G ∣ = ∣ H ∣ × [ G : H ] |G|=|H|\times[G{:}H] G=H×[G:H],其中 [ G : H ] [G{:}H] [G:H] 表示陪集分解等价类数量。

正规化子: N ( a ) = { x    ∣    x a = a x } N(a)=\{x\;|\;xa=ax\} N(a)={xxa=ax},即能与 a a a 交换的元素。显然 N ( a ) ⩽ G N(a)\leqslant G N(a)G

正规子群:若 H ⩽ G H\leqslant G HG 满足 ∀ a ∈ G ,    a H = H a \forall a\in G,\;aH=Ha aG,aH=Ha,则 H H H G G G 的正规子群,记为 H ⊴ G H\unlhd G HG 。——该符号为 \unlhd

商群:对 H ⊴ G H\unlhd G HG,定义 G / H = { a H : a ∈ G } G/H=\{aH:a\in G\} G/H={aH:aG} 即所有 H H H 的陪集。在其上定义乘法 ( a H ) ( b H ) = { x y : x ∈ a H ,    y ∈ b H } (aH)(bH)=\{xy:x\in aH,\;y\in bH\} (aH)(bH)={xy:xaH,ybH},不难发现 ( a H ) ( b H ) = a ( H b ) H = a ( b H ) H = ( a b ) H (aH)(bH)=a(Hb)H=a(bH)H=(ab)H (aH)(bH)=a(Hb)H=a(bH)H=(ab)H,故其构成群。

按:事实上 G / H G/H G/H 就被读作 G   m o d   H G\bmod H GmodH,应该比较形象。所以整数环里经常有 Z / p Z \Z/p\Z Z/pZ 这种记法,其实就是模 p p p 完全剩余系。也写为 Z p \Z_p Zp

共轭元素:设 a , b ∈ G a,b\in G a,bG,若 ∃ x ∈ G ,    x a x − 1 = b \exists x\in G,\;xax^{-1}=b xG,xax1=b 则称 b b b a a a 的共轭。以此为等价关系,可进行分解,且 a a a 所在的共轭等价类的大小 = ∣ G ∣ ∣ N ( a ) ∣ =\frac{|G|}{|N(a)|} =N(a)G

证明: x a x − 1 = y a y − 1 ⇔ a x − 1 y = x − 1 y a ⇔ x − 1 y ∈ N ( a ) xax^{-1}=yay^{-1}\Leftrightarrow ax^{-1}y=x^{-1}ya\Leftrightarrow x^{-1}y\in N(a) xax1=yay1ax1y=x1yax1yN(a),故每个 N ( a ) N(a) N(a) 陪集分解的等价类产生一个共轭元素,由 Lagrange \text{Lagrange} Lagrange 定理即得。

共轭子群:设 H ⩽ G H\leqslant G HG,定义 x H x − 1 = { x h x − 1 : h ∈ H } xHx^{-1}=\{xhx^{-1}:h\in H\} xHx1={xhx1:hH},易证 x H x − 1 ⩽ G xHx^{-1}\leqslant G xHx1G,其被称为 H H H 的共轭子群。注意这不能叫做两次陪集,因为陪集只在子群上定义。

置换群

置换群:置换关于复合运算形成的群。

循环指标( Cycle index \text{Cycle index} Cycle index):对 n n n 元置换 g g g,其循环指标为 ∏ i = 1 n x i c i \prod_{i=1}^{n} x_i^{c_i} i=1nxici,其中 c i c_i ci 为大小为 i i i循环 数量,而 x i x_i xi 是形式变元。定义它只是为了表明置换是否同构。

轨道-稳定子群定理

G G G 为关于群 X X X 的置换群。下文中 g ∈ G ,    a ∈ X g\in G,\;a\in X gG,aX

轨道: G ( a ) = { g ( a )    ∣    g ∈ G } G(a)=\{g(a)\;|\;g\in G\} G(a)={g(a)gG} 。类似陪集。

稳定子群: G a = { g    ∣    g ( a ) = a } G_a=\{g\;|\;g(a)=a\} Ga={gg(a)=a} 。显然 G a ⩽ G G_a\leqslant G GaG

轨道-稳定子群定理: ∣ G ( a ) ∣ ⋅ ∣ G a ∣ = ∣ G ∣ |G(a)|\cdot|G_a|=|G| G(a)Ga=G

证明:任取 x , y ∈ G x,y\in G x,yG x ( a ) = y ( a ) ⇔ x − 1 y ∈ G a x(a)=y(a)\Leftrightarrow x^{-1}y\in G_a x(a)=y(a)x1yGa,故 [ G : G a ] = ∣ G ( a ) ∣ [G{:}G_a]=|G(a)| [G:Ga]=G(a),由 Lagrange \text{Lagrange} Lagrange 定理即证。

Burnside \text{Burnside} Burnside 定理

置换的不动点: X g = { a    ∣    g ( a ) = a } X^g=\{a\;|\;g(a)=a\} Xg={ag(a)=a}

轨道集族: X / G = { G ( a )    ∣    a ∈ X } X/G=\{G(a)\;|\;a\in X\} X/G={G(a)aX}

Burnside \text{Burnside} Burnside 定理: ∣ G ∣ ⋅ ∣ X / G ∣ = ∑ g ∈ G ∣ X g ∣ |G|\cdot|X/G|=\sum_{g\in G}|X^g| GX/G=gGXg

证明: ∑ g ∈ G ∣ X g ∣ = ∑ a ∈ X ∣ G a ∣ = ∑ a ∈ X ∣ G ∣ ∣ G ( a ) ∣ \sum_{g\in G}|X^g|=\sum_{a\in X}|G_a|=\sum_{a\in X}\frac{|G|}{|G(a)|} gGXg=aXGa=aXG(a)G 。值得注意的是 a ∈ G ( a ) a\in G(a) aG(a),且 ∀ b ∈ G ( a ) ,    G ( b ) = G ( a ) \forall b\in G(a),\;G(b)=G(a) bG(a),G(b)=G(a),因此每个不同的 G ( a ) G(a) G(a) 总贡献为 1 1 1 ∑ a ∈ X 1 ∣ G ( a ) ∣ = ∣ X / G ∣ \sum_{a\in X}\frac{1}{|G(a)|}=|X/G| aXG(a)1=X/G,得证。

广义 Burnside \text{Burnside} Burnside 定理

我们对置换赋予权值 ω ( g ) \omega(g) ω(g) 。一般而言 ω ( g ) \omega(g) ω(g) 只与 g g g 的循环指标有关。

引理: w ( x g x − 1 ) = w ( g ) w(xgx^{-1})=w(g) w(xgx1)=w(g) 即共轭置换的权值相同。

证明:位置 i i i g g g 中的循环大小为 min ⁡ n ∈ N +    s.t.    g n [ i ] = i \min n\in\N^+\;\text{s.t.}\;g^n[i]=i minnN+s.t.gn[i]=i 。由此知 i i i x − 1 g x x^{-1}gx x1gx 中的循环大小为 min ⁡ n ∈ N +    s.t.    ( x − 1 g n x ) [ i ] = i \min n\in\N^+\;\text{s.t.}\;(x^{-1}g^nx)[i]=i minnN+s.t.(x1gnx)[i]=i,这等价于 g n [ x [ i ] ] = x [ i ] g^n[x[i]]=x[i] gn[x[i]]=x[i],即 x [ i ] x[i] x[i] g g g 中的循环大小。由于 x x x 是双射所以循环指标不变。

引理:轨道 G ( a ) G(a) G(a) 中的所有元素的稳定子群共轭。

证明:取 b = g 0 ( a ) b=g_0(a) b=g0(a),则 g 0 G a g 0 − 1 = G b g_0G_ag_0^{-1}=G_b g0Gag01=Gb,因为 ∣ G a ∣ = ∣ G b ∣ |G_a|=|G_b| Ga=Gb

ω ( H ) = ∑ g ∈ H ω ( g )    ( H ⩽ G ) \omega (H)=\sum_{g\in H}\omega(g)\;(H\leqslant G) ω(H)=gHω(g)(HG),由引理可知 ω ( G a ) = ω ( G b )    ( b ∈ G ( a ) ) \omega(G_a)=\omega(G_b)\;(b\in G(a)) ω(Ga)=ω(Gb)(bG(a)),则
∑ g ∈ G ω ( g ) ∣ X g ∣ = ∑ a ∈ X ω ( G a ) = ∑ H ∈ X / G ω ( G H ) ∣ H ∣ \begin{aligned} \sum_{g\in G}\omega(g)|X^g| &=\sum_{a\in X}\omega(G_a) \\ &=\sum_{H\in X/G}\omega(G_H)|H| \end{aligned} gGω(g)Xg=aXω(Ga)=HX/Gω(GH)H

也是考虑每一个轨道的贡献。注意这里 G H G_H GH 表示任意 a ∈ H a\in H aH G a G_a Ga

当然,如果染色 a a a 本身还带有系数 f ( a ) f(a) f(a),那也没问题,无非是
∑ g ∈ G ω ( g ) f ( X g ) = ∑ H ∈ X / G ω ( G H ) f ( H ) \sum_{g\in G}\omega(g)f(X^g)=\sum_{H\in X/G}\omega(G_H)f(H) gGω(g)f(Xg)=HX/Gω(GH)f(H)

其中 f ( H ) = ∑ a ∈ H f ( a ) f(H)=\sum_{a\in H}f(a) f(H)=aHf(a)

Polya \text{Polya} Polya 容斥

考虑一般的染色问题,即给 n n n 个位置赋予颜色。设置换群 G = S n G=S_n G=Sn,其中 S n S_n Sn 为所有 n n n 元置换的群。

ω ( g ) = ( − 1 ) σ ( g ) \omega(g)=(-1)^{\sigma(g)} ω(g)=(1)σ(g),其中 σ ( g ) \sigma(g) σ(g) 为置换 g g g 的逆序对。不难发现 ω ( S t ) = 0    ( t ⩾ 2 ) \omega(S_t)=0\;(t\geqslant 2) ω(St)=0(t2)(证明可以构造全一矩阵行列式)。

考虑 a ∈ X a\in X aX G a G_a Ga,其同构于 ∏ S i c i \prod S_i^{c_i} Sici,这里的 “积” 是直积, c i c_i ci 是出现次数为 i i i 的颜色的数量。若 c i ⩾ 1    ( i ⩾ 2 ) c_i\geqslant 1\;(i\geqslant 2) ci1(i2),则由 ω ( S i ) = 0 \omega(S_i)=0 ω(Si)=0 ω ( G a ) = 0 \omega(G_a)=0 ω(Ga)=0 。所以,仅在每种颜色只出现一次时,有 ω ( G a ) = 1 \omega(G_a)=1 ω(Ga)=1 。代入 广义 Burnside 定理
∣ G ∣ ∑ H ∈ X / G [ H  is mottled ] = ∑ g ∈ G ( − 1 ) ω ( g ) ∣ X g ∣ |G|\sum_{H\in X/G}[H\text{ is mottled}]=\sum_{g\in G}(-1)^{\omega(g)}|X^g| GHX/G[H is mottled]=gG(1)ω(g)Xg

这里 [ H  is mottled ] [H\text{ is mottled}] [H is mottled] 意思就是 n n n 个位置异色。显然这样的 a ∈ H a\in H aH 会满足 ∣ G ( a ) ∣ = n ! = ∣ G ∣ |G(a)|=n!=|G| G(a)=n!=G

生成函数版 Polya \text{Polya} Polya 容斥

参考太阳神的博客

F ( x ) F(x) F(x) 为单个元素的 O G F \rm OGF OGF,需求出 F ( x ) F(x) F(x) k k k 个互不相同的项的乘积的和的 O G F \rm OGF OGF

仿照组合数的求法,我们猜测存在它就是
∏ j = 0 k − 1 [ F ( x ) − j E ] k ! \frac{\prod_{j=0}^{k-1}[F(x)-j\mathscr E]}{k!}\\ k!j=0k1[F(x)jE]

其中 E \mathscr E E 是 “虽然不知道它具体什么含义但是总觉得一定是很厉害的使得式子成立的算子”,简称 “不明觉厉算子”。——其实是 crashed \textsf{crashed} crashed 用位移算子( shift operator \text{shift operator} shift operator)来命名的 😓

注意 E \mathscr E E F ( x ) F(x) F(x) 不能交换,上面的 ∏ \prod 其实是有歧义的。写成 F ( x ) [ F ( x ) − E ] [ F ( x ) − 2 E ] ⋯ [ F ( x ) − ( k − 1 ) E ] F(x)[F(x)-\mathscr E][F(x)-2\mathscr E]\cdots[F(x)-(k{-}1)\mathscr E] F(x)[F(x)E][F(x)2E][F(x)(k1)E] 应该就没有歧义了。

事实上
F ( x k ) E = F ( x k + 1 ) F(x^k)\mathscr E=F(x^{k+1}) F(xk)E=F(xk+1)

这就是 E \mathscr E E 的真面目。你仔细想想就知道,这是 Polya \text{Polya} Polya 容斥。因为 F ( x k ) F(x^k) F(xk) 是大小为 k k k 的循环的 O G F \rm OGF OGF E \mathscr E E 系数从 ( n − 1 ) (n{-}1) (n1) 0 0 0 是选择后继,而 F ( x ) F(x) F(x) 本身则是给循环 “封口” 的。

  • 4
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值