题目
思路
一开始想的二分答案。不过这个也不是完全不可取。至少为正解提供了思路。
假如我们需要 gcd ≤ d \gcd\le d gcd≤d ,那么 ∀ x ≤ d \forall x\le d ∀x≤d 都可以直接加入,毕竟 gcd ( a , b ) ≤ min ( a , b ) \gcd(a,b)\le\min(a,b) gcd(a,b)≤min(a,b) 。但是 ∀ x > d \forall x>d ∀x>d 都有 x x x 的倍数最多出现一次,否则至少有一个 x x x 的 gcd \gcd gcd 。
对于 k x kx kx ,就没有 “ k x kx kx 的倍数最多选一个” 的限制,因为 “ x x x 的倍数最多选一个” 已经把它包含了。
那么我们还剩下多少个限制呢?先不告诉你,我先告诉你答案怎么算。假设剩下 r r r 个限制,那么最多只可能拿 r r r 个数字,因为这 r r r 个限制已经涵盖了所有数字。能不能拿到这个峰值呢?当然可以,就是尽量拿小的即可。举栗子, d = 3 d=3 d=3 时, 4 4 4 的倍数最多出现一次,那么就拿 4 4 4 即可,就一定不会对别的限制产生影响。
于是问题转化为怎么求独立的限制。显然限制 “ x x x 的倍数最多出现一次” 会被 x x x 的因子给踢掉。也就是说, ∃ k ∣ x , d < k \exist k|x,\;d<k ∃k∣x,d<k 则 x x x 嗝屁。肯定只有最大的 k k k 有用。也就是求 x x x 的最大真因子。这个可以用 x x x 除以 x x x 的最小质因数得到。欧拉筛即可。
然后呢?设 x x x 的最大真因子是 y y y ,那么我们知道, d ≥ y d\ge y d≥y 则 x x x 是可用的。这可以直接差分。
现在我们求出了 ∀ d , gcd < d \forall d,\;\gcd<d ∀d,gcd<d 时的最大集合,还原回 I k I_k Ik 不是轻而易举吗?
代码
#include <cstdio>
#include <iostream>
#include <vector>
using namespace std;
typedef long long int_;
inline int readint(){
int a = 0; char c = getchar(), f = 1;
for(; c<'0'||c>'9'; c=getchar())
if(c == '-') f = -f;
for(; '0'<=c&&c<='9'; c=getchar())
a = (a<<3)+(a<<1)+(c^48);
return a*f;
}
inline void writeint(int x){
if(x > 9) writeint(x/10);
putchar((x%10)^48);
}
const int MaxN = 500005;
bool isPrime[MaxN];
int least[MaxN];
vector< int > primes;
int sievePrime(int n){
for(int i=2; i<=n; ++i)
isPrime[i] = true;
int len = 0; primes.clear();
for(int i=2; i<=n; ++i){
if(isPrime[i]){
primes.push_back(i);
least[i] = i, ++ len;
}
for(int j=0; j<len; ++j){
if(1ll*i*primes[j] > n)
break;
isPrime[i*primes[j]] = 0;
least[i*primes[j]]
= primes[j];
if(i%primes[j] == 0)
break;
}
}
return len;
}
int cnt[MaxN];
int main(){
int n = readint();
sievePrime(n), least[1] = 1;
for(int i=1; i<=n; ++i)
++ cnt[i/least[i]];
for(int i=1,t=0,p=2; i<=n; ++i){
t += cnt[i];
for(; p<=t; ++p)
printf("%d ",i);
}
return 0;
}