[CF1333F]Kate and imperfection

280 篇文章 1 订阅
89 篇文章 0 订阅

题目

传送门 to luogu

思路

一开始想的二分答案。不过这个也不是完全不可取。至少为正解提供了思路。

假如我们需要 gcd ⁡ ≤ d \gcd\le d gcdd ,那么 ∀ x ≤ d \forall x\le d xd 都可以直接加入,毕竟 gcd ⁡ ( a , b ) ≤ min ⁡ ( a , b ) \gcd(a,b)\le\min(a,b) gcd(a,b)min(a,b) 。但是 ∀ x > d \forall x>d x>d 都有 x x x 的倍数最多出现一次,否则至少有一个 x x x gcd ⁡ \gcd gcd

对于 k x kx kx ,就没有 “ k x kx kx 的倍数最多选一个” 的限制,因为 “ x x x 的倍数最多选一个” 已经把它包含了。

那么我们还剩下多少个限制呢?先不告诉你,我先告诉你答案怎么算。假设剩下 r r r 个限制,那么最多只可能拿 r r r 个数字,因为这 r r r 个限制已经涵盖了所有数字。能不能拿到这个峰值呢?当然可以,就是尽量拿小的即可。举栗子, d = 3 d=3 d=3 时, 4 4 4 的倍数最多出现一次,那么就拿 4 4 4 即可,就一定不会对别的限制产生影响。

于是问题转化为怎么求独立的限制。显然限制 “ x x x 的倍数最多出现一次” 会被 x x x 的因子给踢掉。也就是说, ∃ k ∣ x ,    d < k \exist k|x,\;d<k kx,d<k x x x 嗝屁。肯定只有最大的 k k k 有用。也就是求 x x x 的最大真因子。这个可以用 x x x 除以 x x x 的最小质因数得到。欧拉筛即可。

然后呢?设 x x x 的最大真因子是 y y y ,那么我们知道, d ≥ y d\ge y dy x x x 是可用的。这可以直接差分。

现在我们求出了 ∀ d ,    gcd ⁡ < d \forall d,\;\gcd<d d,gcd<d 时的最大集合,还原回 I k I_k Ik 不是轻而易举吗?

代码

#include <cstdio>
#include <iostream>
#include <vector>
using namespace std;
typedef long long int_;
inline int readint(){
	int a = 0; char c = getchar(), f = 1;
	for(; c<'0'||c>'9'; c=getchar())
		if(c == '-') f = -f;
	for(; '0'<=c&&c<='9'; c=getchar())
		a = (a<<3)+(a<<1)+(c^48);
	return a*f;
}
inline void writeint(int x){
	if(x > 9) writeint(x/10);
	putchar((x%10)^48);
}

const int MaxN = 500005;
bool isPrime[MaxN];
int least[MaxN];
vector< int > primes;
int sievePrime(int n){
	for(int i=2; i<=n; ++i)
		isPrime[i] = true;
	int len = 0; primes.clear();
	for(int i=2; i<=n; ++i){
		if(isPrime[i]){
			primes.push_back(i);
			least[i] = i, ++ len;
		}
		for(int j=0; j<len; ++j){
			if(1ll*i*primes[j] > n)
				break;
			isPrime[i*primes[j]] = 0;
			least[i*primes[j]]
				= primes[j];
			if(i%primes[j] == 0)
				break;
		}
	}
	return len;
}

int cnt[MaxN];
int main(){
	int n = readint();
	sievePrime(n), least[1] = 1;
	for(int i=1; i<=n; ++i)
		++ cnt[i/least[i]];
	for(int i=1,t=0,p=2; i<=n; ++i){
		t += cnt[i];
		for(; p<=t; ++p)
			printf("%d ",i);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值