《VAST: A Vision-Audio-Subtitle-Text Omni-Modality Foundation Model and Dataset》中文校对版

文章汉化系列目录



摘要

 视觉和文本已经在当代的视频-文本基础模型中得到了充分的探索,而视频中的其他模态,如音频和字幕,则未得到足够的关注。本文通过探索一个自动生成的大规模全模态视频描述数据集——VAST-27M,旨在建立视频的多模态轨迹之间的联系,包括视觉、音频、字幕和文本。具体来说,我们首先收集了2700万条开放领域的视频片段,并分别训练了视觉和音频描述模型来生成视觉和音频描述。然后,我们使用现成的大型语言模型(LLM)将生成的描述、字幕和指令提示结合起来,整合成全模态描述。基于提出的VAST-27M数据集,我们训练了一个全模态的视频-文本基础模型,命名为VAST,该模型能够感知和处理视频中的视觉、音频和字幕模态,并更好地支持各种任务,包括视觉-文本、音频-文本和多模态视频-文本任务(检索、描述和问答)。我们进行了大量实验,以验证所提VAST-27M语料库和VAST基础模型的有效性。VAST在多个跨模态基准测试中取得了22项新的最先进结果。代码、模型和数据集将发布在 https://github.com/TXH-mercury/VAST

引言

 每天都有大量的视频被录制并上传到社交媒体平台,这使得视频内容理解成为人工智能领域的一个关键研究方向。同时,文本是我们日常生活中最直接、最有效的信息传播方式。因此,视频-文本跨模态学习对于人工智能系统与人类的互动至关重要,它帮助系统理解视频内容(视频描述)、搜索所需的视频(文本到视频检索)或回答关于视频的问题(视频问答)。随着无监督预训练技术[1; 2]和大规模视频-文本语料库[3; 4]的出现,视频-文本预训练模型在上述任务中取得了快速进展,并且在相关任务上取得了相对令人印象深刻的表现。

 然而,我们认为,当前的预训练模型远非完美,因为它们大多仅限于建立视频中文本和视觉内容之间的联系,而没有整合其他模态信息,如音频和字幕。具体而言,环境音频可以提供与视觉信息重叠的额外上下文,以减少歧义并提高模型的预测置信度,或者补充视觉信息,提供更多的多模态线索。人类的语音或转录(字幕)也包含关于对话、新闻或操作程序的宝贵信息,这些信息可以与视觉信息共同建模,从而增强视频的全面理解。考虑到音频和字幕在视频理解中的重要性,将它们集成到一个更先进的全模态基础模型中是必要的,如图1所示。

在这里插入图片描述

图1:传统跨模态预训练与提出的全模态预训练的区别示意图。得益于提出的全模态视频描述语料库VAST-27M,VAST基础模型可以从多个信息源感知视频,包括视觉、音频和字幕,并通过大规模预训练增强全模态视频(OMV)与全模态描述(OMC)之间的联系。A、V、S和T分别代表音频、视觉、字幕和文本。AC、VC和AVC分别是音频、视觉和视听描述的缩写。

 主要的挑战在于缺乏适当的训练语料库。为了训练这样的基础模型,我们需要一个全模态视频描述语料库,其中描述同时与视觉、音频和字幕相对应。不幸的是,如表2所示,目前的视听文本语料库要么使用原始字幕作为描述[4; 5; 6],要么仅包含视觉描述(替代文本)[3],或者包含视听描述但规模有限[7]。另一方面,由于对描述的高需求,手动标注一个全模态语料库并不可行,因为这涉及巨大的成本。为了解决这个问题,我们提出了一种两阶段自动化流程,用于从大规模开放领域视频语料库(HD_VILA_100M [5])生成全模态描述。具体来说,如图2所示,在第一阶段,我们在公开可用的视觉和音频描述语料库上训练了分别的视觉和音频描述模型,然后利用这些模型生成高质量的单模态客观描述。在第二阶段,我们使用现成的大型语言模型(LLM)Vicuna-13b [8]作为零-shot全模态描述生成器。我们将生成的单模态描述、字幕和指令性提示输入LLM,鼓励LLM将不同模态的信息融合并总结为一个长句,形成一个全模态描述。通过这一过程,我们创建了VAST-27M数据集,其中包含2700万条视频片段,每个视频都配有11个描述(包括5个视觉描述、5个音频描述和1个全模态描述)。由于其全面的描述类型,VAST-27M可以为包括视觉-文本、音频-文本和全模态预训练在内的多个研究领域做出贡献。大量实验表明,VAST-27M在多个方面显著超越了当前的视听文本、音频文本和视听文本语料库。
在这里插入图片描述

表2:当前视频-文本和音频-文本预训练语料库与提出的VAST-27M的比较。VAST-27M是首个大规模全模态视频描述语料库,包含各种类型的自动生成描述。S、VC、AC、AVC和OMC分别代表字幕、视觉、音频、视听和全模态描述。

 基于VAST-27M,我们训练了一个视觉-音频-字幕-文本全模态基础模型,命名为VAST。如图2所示,VAST由三个单模态编码器组成,而文本编码器则通过交叉注意力层实现跨模态融合。VAST的训练目标包括OM-VCC、OM-VCM和OM-VCG(在第4.2节中详细介绍),旨在增强全模态理解和生成能力。如表1所示,与现有的跨模态预训练模型相比,VAST是在全模态视频描述语料库上进行训练的,能够感知和处理所有四种模态,并支持广泛的下游任务,涵盖各种模态(视觉-文本、音频-文本和多模态视频-文本),以及多种类型(检索、描述和问答)。
在这里插入图片描述

图2:VAST-27M的描述生成过程(上)和VAST的训练框架(下)。视觉和音频描述生成器根据输入的视频片段生成描述,全模态描述生成器(Vicuna-13b)将这些描述与原始字幕和指令提示结合,生成全模态描述。VAST模型由三个编码器组成,并在三个目标(OM-VCC、OM-VCM和OM-VCG)下进行训练。

在这里插入图片描述

表1:当前跨模态预训练模型与提出的VAST的比较。VAST是首个能够感知四种模态并能推广到各种下游任务的基础模型。V、A、S和T分别代表视觉、音频、字幕和文本。

 我们的贡献总结如下:
(i) 我们提出了VAST-27M,这是首个大规模全模态视频描述数据集,通过训练的单模态描述生成器和大型语言模型自动生成;
(ii) 我们训练了首个视觉-音频-字幕-文本基础模型VAST,该模型实现了全模态感知和理解;
(iii) 大量实验验证了VAST的有效性,并且在各种跨模态基准测试中超越了最先进的技术。

2. 相关工作

2.1 跨模态预训练语料库

视频-文本预训练语料库:在早期阶段,大多数视频-文本模型是基于大规模的HowTo100M数据集[4]进行训练的。该数据集包含来自122万部教学YouTube视频的1.36亿个视频片段,并使用自动生成的字幕(来自自动语音识别工具的转录)作为相应片段的描述。后来,Zellers等人提出了YT-Temporal-180M语料库[6],该语料库包含来自600万个YouTube视频的1.8亿个视频片段,遵循了类似的收集方案,用于收集叙事视频和字幕语料库。为了克服仅限于教学领域的局限,Xue等人构建了开放域、高分辨率的HD_VILA_100M语料库[5],该语料库包含来自330万个YouTube视频的1亿个视频片段。然而,尽管标注字幕比注释描述成本更低,但字幕通常与视觉内容的直接相关性较弱,导致模型学习中的视频-文本关联较弱。受到Conceptual Captions数据集(CC)[9; 10]的收集方案启发,Bain等人编制了WebVid2.5M和WebVid10M数据集[3],采用替代文本作为视频描述,超越了使用字幕作为描述的上述数据集。然而,尽管替代文本与视频内容的相关性比字幕更强,但它们与标准描述风格不同,且仍然包含噪声。此外,替代文本通常仅描述视觉内容,未包含其他模态。进一步超越视觉,Chen等人创建了VALOR-1M数据集[7],该数据集包含来自AudioSet[11]的100万个视频片段,并配有注释的视听描述。然而,这些描述中未反映字幕内容,且由于人工标注的高成本,该数据集的规模有限,扩展也较为困难。与上述训练语料库相比,我们的VAST-27M是第一个高质量、大规模的全模态视频描述数据集,其描述涵盖了视频的所有模态,包括视觉、音频和字幕。此外,由于采用自动化生成流程,其扩展性更具成本效益。

音频-文本预训练语料库:与视觉-文本预训练相比,由于训练语料库在数量和规模上的限制,音频-文本预训练的进展相对较慢。人类标注的数据集,如Clotho[12]、AudioCaps[13]、MCAS[14]和AudioCaption[15],都包含少于5万个音频片段,远远不能满足大规模预训练的需求。Wu等人通过抓取多个来源的音频及其相应的替代文本,编制了LAION-Audio-630K数据集[16],其中大多数音频来源于Freesound[17]。Mei等人介绍了WavCaps[18],该数据集包含来自多个来源的403,000个音频及其描述。他们使用ChatGPT对原始描述进行筛选和重写,将其转化为类似描述的句子。然而,描述的质量受原始描述质量的影响很大。与此不同,我们通过训练的高质量描述模型生成音频描述,VAST-27M的数据集规模几乎是LAION-Audio-630K或WavCaps的两个数量级。

2.2 多模态学习

 早期已经有一些方法探索了用于视频-文本理解的多模态轨迹。例如,MMT [21]利用七个专家来增强文本到视频的检索,而SMPFF [22]则引入了音频用于视频描述。在视频-文本预训练的背景下,也有一些工作联合建模了字幕或音频与视觉和文本。引入字幕的著名例子包括UniVL [23]、CoMVT [24]和VALUE [20]。然而,这些模型中建立的字幕-文本关联是隐式且较弱的,通过掩蔽预测[23]或下一个话语预测[24]实现,使用原始字幕作为预测目标,而不是抽象文本。这种方法在预训练和微调阶段之间引入了不一致性。相比之下,VAST充分利用大型语言模型的泛化能力,从字幕中提取最重要的信息并转化为语言描述。
 另一方面,音频引入的著名例子包括AVLNet [25]、MERLOT Reserve [26]、i-Code [27]和VALOR [7]。然而,AVLNet、MERLOT Reserve和i-Code侧重于学习音频-字幕关系,而非音频-文本关系,限制了它们在文本到音频检索和音频描述等任务中的泛化能力。虽然VALOR联合建模了音频、视觉和文本,但它主要针对感知环境声音,对人类语音的关注较少。与上述方法相比,VAST是首个能够感知四种模态的全模态基础模型,能够将视觉、音频和字幕连接到描述中。

3 数据集

3.1 VAST-27M的数据收集

视觉描述生成器训练:为了建立物体和视觉概念之间的通用对应关系,我们借鉴了BLIP [28]的灵感,首先在大规模的图像-文本语料库上训练了一个视觉描述模型,这些语料库包括CC4M、CC12M,以及从LAION-400M [29]中随机选取的1亿对图像-文本数据。随后,我们在手动标注的图像和视频描述数据集的组合上对模型进行了微调,包括MSCOCO [30]、VATEX [31]、MSRVTT [32]和MSVD [33]。通过这一过程,我们得到了一个高质量的描述生成模型,能够感知静态物体和动态动作,从而生成流畅且准确的描述。

音频描述生成器训练:对于音频描述任务,我们使用大规模的音频-文本语料库(即VALOR-1M和WavCaps数据集)训练了一个专门的音频描述生成模型。与视觉描述生成器不同,由于下游音频描述数据集的规模有限,我们没有进行第二阶段的微调,因为这可能导致模型在狭窄的音频概念范围内过拟合。此外,VALOR-1M是一个人工标注的语料库,可以确保生成的描述在一定程度上的准确性。

片段选择:由于下载、存储和计算的时间和成本因素,我们从HD_VILA_100M数据集中选择了2700万个视频片段,而没有使用全部数据。选择规则如下:

  1. 长度小于5秒或大于30秒的片段被剔除。
  2. 缺失视觉、音频或字幕模态的片段被剔除。
  3. 从HD_VILA_100M中的原始330万个长视频中均匀选择片段。

描述生成:对于VAST-27M中的每个视频片段,我们使用训练好的视觉和音频描述生成器每个生成5个描述,采用Top-K采样方法,K=10。随后,我们利用现成的Vicuna-13b [8]模型作为全模态描述生成器。Vicuna-13b是一个基于Transformer架构的开源自回归大型语言模型(LLM),通过对LLaMA [34]进行微调,并在ShareGPT收集的用户共享对话数据上进行训练。对于每个视频片段,我们随机选择3个视觉描述和3个音频描述,并将它们与原始字幕和设计的指令性提示一起输入到LLM中。如图2所示,LLM生成的全模态描述有效地描述了视觉、音频和字幕内容,同时遵循自然的人类描述风格。更多VAST-27M数据集的示例可以在附录中找到。

3.2 VAST-27M的统计数据

VAST-27M包含来自大规模HD_VILA_100M数据集的2700万个视频片段。该数据集涵盖了15个以上的类别,包括音乐、游戏、教育、娱乐、动物等,而不仅限于像HowTo100M那样的教学领域。与其他常用的跨模态训练语料库相比,如表2所示,VAST-27M包含更多的描述(无论是模态还是数量)。VAST-27M中视觉描述、音频描述和全模态描述的平均长度分别为12.5、7.2和32.4。

4 方法

4.1 基本框架

如图2所示,VAST采用了一个完全端到端的Transformer架构,包含一个视觉编码器(ViT [35])、一个音频编码器(BEATs [36])和一个文本编码器(BERT [2])。该框架能够处理多模态输入,如图像、视频、音频、字幕和描述。文本编码器负责编码单模态的描述或字幕,并通过交叉注意力层执行多模态的编码/解码。全模态描述和字幕使用WordPiece分词器 [37] 进行标记化,然后输入文本编码器以分别获得输出特征 f omc f_{\text{omc}} fomc f s f_s fs

视觉编码器以原始图像或稀疏采样的视频帧作为输入,产生输出特征 f v f_v fv。对于音频片段,它们首先被划分为多个10秒长的片段,用零进行填充,使用25ms的Hamming窗转换为64维的对数Mel滤波器组谱图,然后输入音频编码器以获得输出特征 f a f_a fa。这些特征的全局表示([CLS] token 特征)分别表示为 f omcg f_{\text{omcg}} fomcg f s g f_{sg} fsg f v g f_{vg} fvg f a g f_{ag} fag

4.2 预训练目标

基于传统的视觉-文本预训练目标,VAST采用以下三个预训练目标:

  1. 全模态视频-描述对比损失(OM-VCC):视频片段的全模态全局表示,记作 f omvg f_{\text{omvg}} fomvg,通过将 f s g f_{sg} fsg f v g f_{vg} fvg f a g f_{ag} fag 连接得到。随后, f omvg f_{\text{omvg}} fomvg f omcg f_{\text{omcg}} fomcg 被投影到相同的语义空间,通过两个线性层进行映射,并进行归一化。使用对比损失来规范全模态视频(OMV)和描述(OMC)之间特征的距离。对比损失定义如下,其中 sim(·) 表示 f omcg f_{\text{omcg}} fomcg f omvg f_{\text{omvg}} fomvg 的点积, B B B τ \tau τ 分别表示批量大小和一个可学习的参数。

    L OM-VCC = − 1 2 ∑ i = 1 B log ⁡ exp ⁡ ( τ ⋅ sim ( v i , c i ) ) ∑ j = 1 B exp ⁡ ( τ ⋅ sim ( v i , c j ) ) − 1 2 ∑ i = 1 B log ⁡ exp ⁡ ( τ ⋅ sim ( v i , c i ) ) ∑ j = 1 B exp ⁡ ( τ ⋅ sim ( v j , c i ) ) L_{\text{OM-VCC}} = - \frac{1}{2} \sum_{i=1}^{B} \log \frac{\exp(\tau \cdot \text{sim}(v_i, c_i))}{\sum_{j=1}^{B} \exp(\tau \cdot \text{sim}(v_i, c_j))} - \frac{1}{2} \sum_{i=1}^{B} \log \frac{\exp(\tau \cdot \text{sim}(v_i, c_i))}{\sum_{j=1}^{B} \exp(\tau \cdot \text{sim}(v_j, c_i))} LOM-VCC=21i=1Blogj=1Bexp(τsim(vi,cj))exp(τsim(vi,ci))21i=1Blogj=1Bexp(τsim(vj,ci))exp(τsim(vi,ci))

  2. 全模态视频-描述匹配损失(OM-VCM):此损失鼓励模型推断一对 OMV 和 OMC 是否匹配。具体而言,描述标记再次输入到文本编码器中,这次启用交叉注意力层,关注条件特征 f omv f_{\text{omv}} fomv,它是通过在顺序维度上连接 f s f_s fs f v f_v fv f a f_a fa 得到的。在连接之前,使用三个独立的线性层调整它们的隐藏大小,使其相同。文本编码器的输出特征被送入两层MLP进行二分类预测。为了创建有信息量的负样本对,我们采用了硬负样本挖掘策略[38]。损失函数定义如下,其中 y = 1 y = 1 y=1 表示 OMV 和 OMC 匹配, y = 0 y = 0 y=0 表示不匹配。

    L OM-VCM = E ( v i , c i ) ∼ ( V , C ) [ y log ⁡ p vcm + ( 1 − y ) log ⁡ ( 1 − p vcm ) ] L_{\text{OM-VCM}} = \mathbb{E}_{(v_i, c_i) \sim (V, C)} [y \log p_{\text{vcm}} + (1 - y) \log (1 - p_{\text{vcm}})] LOM-VCM=E(vi,ci)(V,C)[ylogpvcm+(1y)log(1pvcm)]

  3. 全模态视频描述生成损失(OM-VCG):此损失采用条件因果掩蔽语言建模来增强模型生成全模态描述的能力。具体而言,在文本编码器输入时,对OMC中的60%的标记进行掩蔽。启用交叉注意力层,并使用 f omv f_{\text{omv}} fomv 作为条件特征,如同在 OM-VCM 中一样。文本编码器中的自注意力层使用单向因果注意力掩码以防止信息泄露,并且在文本编码器的输出端使用BERT的标准预测层重建掩蔽的标记。损失定义如下,其中 c m c_m cm c < m c_<m c<m 分别表示掩蔽的标记和掩蔽前的标记。

    L OM-VCG = − E ( v i , c i ) ∼ ( V , C ) log ⁡ P ( c m ∣ c < m , v ) L_{\text{OM-VCG}} = -\mathbb{E}_{(v_i, c_i) \sim (V, C)} \log P(c_m | c_<m, v) LOM-VCG=E(vi,ci)(V,C)logP(cmc<m,v)

总损失 L OM L_{\text{OM}} LOM 是三个损失的和,为简单起见,三个损失的权重相等。

L OM = L OM-VCC + L OM-VCM + L OM-VCG L_{\text{OM}} = L_{\text{OM-VCC}} + L_{\text{OM-VCM}} + L_{\text{OM-VCG}} LOM=LOM-VCC+LOM-VCM+LOM-VCG

4.3 模态分组

 虽然VAST在预训练过程中建立了全模态视频-描述的对应关系,但考虑到在下游基准测试和实际应用中可能会缺少某些模态,因此有必要解决这一问题,因为预训练和适应过程中使用的模态之间的不一致性可能会产生负面影响。受到VALOR [7] 提出的模态分组策略的启发,我们统一建模了V-T、A-T、VA-T、VS-T 和 VAS-T(前文提到的LOM)之间的关系。具体来说,视觉和音频描述分别用于V-T和A-T建模,而全模态描述用于VA-T、VS-T和VAS-T建模。

最终的损失函数被公式化为:

L = L OM + L V − T + L A − T + L V A − T + L V S − T L = L_{\text{OM}} + L_{V-T} + L_{A-T} + L_{VA-T} + L_{VS-T} L=LOM+LVT+LAT+LVAT+LVST

5. 实验

5.1 实现细节

VAST使用PyTorch框架在64张Tesla V100显卡上进行训练。视觉、音频和文本编码器分别从EVAClip-ViT-G [39]、BEATs和BERT-B初始化,总参数量为13亿。训练是在由VAST-27M、VALOR-1M、WavCaps、CC14M和从LAION-400M中随机抽取的1.1亿对样本组成的组合语料库上进行,共进行200K步训练。在每个训练步骤中,都会随机选择一个语料库进行训练。此外,CC14M和LAION的原始描述被训练好的视觉描述生成器生成的描述所替代。初始学习率设置为1e-4,并使用线性衰减调度。批量大小设置为1024。在训练阶段,每个视频片段随机选择一个视频帧和两个10秒长的音频片段。对于消融实验,使用CLIP-ViT-B [40]作为视觉编码器,并将其参数冻结以提高效率。有关预训练数据集的混合比例和下游微调配置等更多详细信息,请参见附录。

在下游任务的适应方面,对于检索任务,所有候选项使用VCC进行排名,然后使用VCM对Top-50候选项进行重新排序。对于描述任务,采用大小为3的束搜索。对于问答任务,它们被表述为开放式生成问题,其中问题作为前缀,答案在没有任何约束的情况下进行预测。对于在主文中进行的最先进方法对比和消融实验,使用Recall@1、CIDEr和Acc作为检索、描述和问答任务的评估指标。

5.2 与最先进模型的比较

我们将VAST基础模型与最先进的模型在多个视觉-文本、音频-文本和多模态视频-文本基准上进行了比较。相应的结果总结在表3中。尽管VAST的主要关注点是增强全模态的理解和生成能力,但它在图像-文本、仅视觉的视频-文本和音频-文本基准上也表现出了显著的性能。具体来说,VAST在Flickr30K的文本到图像检索基准上,在微调和零-shot设置下,分别超越了BEiT-3 [47] 和BLIP-2 [46],并在TGIF-QA和MSVD-QA基准上创下了新的最先进结果。

在这里插入图片描述

表3:VAST与最先进方法的性能比较。VAST已取得22项新的最先进结果。Recall@1、CIDEr和Acc分别作为检索、描述生成和问答任务的评估指标。对于描述生成任务,标有‘*’的结果表示采用了SCST微调[41]。‘MM基准’表示这些基准中有音频或字幕轨道可用,SOTA_Vis和SOTA_MM分别表示仅使用视觉轨道或采用多模态轨道的最佳方法。更详细的基准介绍、模型参考和比较结果可以在附录中找到。

此外,VAST在音频-文本基准上表现出色,在VAST-27M语料库中丰富的生成描述的支持下,达到了五项新的最先进结果,取得了显著的改进。在多模态视频-文本基准的背景下,这些基准可以分为三类:以字幕为主的(YouCook2、TVC)基准,需要对字幕进行全面理解以进行推理;以音频为主的(VALOR-32K)基准,要求仔细关注音频线索;以及以视觉为主的其他基准,其中音频和字幕对视觉提供支持。我们的结果表明,VAST在所有类型的基准上均表现出色,超越了之前的视觉-only和多模态最先进模型。特别是,我们在MSRVTT、YouCook2、VATEX和TVC的描述基准上,分别超越了专注于描述任务的GIT2 [19]模型2.1、67.6、5.0和8.0 CIDEr点,同时仅使用了其22.5%的参数和3.4%的训练数据量。此外,我们在11个基准上也显著超越了视觉-音频-文本基础模型VALOR [7]。更详细的比较结果可以在附录中找到。

5.3 与开源跨模态训练语料库的比较

在本小节中,我们定量比较了提出的VAST-27M与当前开源的视频、音频和视听预训练语料库的质量。我们通过在这些语料库上训练模型,并在不同类型的下游任务上进行微调,包括视频检索(RET)、描述生成(CAP)和问答(QA),来实现这一比较。

V-T质量:我们在不同的语料库上训练了多个V-T模型,并在MSVD和MSRVTT数据集上进行了微调。需要注意的是,在预训练和微调中仅使用视频中的视觉内容,所有模型都训练了50K步。如表4所示,在VAST-27M中使用视觉描述的模型(h)在所有六个基准上都取得了最佳结果,明显超越了基线模型和使用其他语料库训练的模型。相比之下,模型(f)将字幕作为描述,类似于原始的HD_VILA_100M数据集,由于视觉-文本关系较弱,表现最差。训练于VAST-27M的模型(g)优于其他语料库的模型,但仍不及模型(h),因为当只输入视觉内容时,使用多模态描述会引入噪声。

A-T质量:我们在不同的语料库上训练了多个A-T模型,并在音频-文本基准上进行微调,包括Clothov2和AudioCaps。我们观察到VALOR-1M和WavCaps容易发生过拟合,因此我们调整了训练迭代次数,以便为每个语料库训练的模型获得最佳结果,而不是使用相同的训练迭代次数。如表5所示,模型(d)在所有四个基准上都超过了基线和在VALOR-1M及WavCaps上训练的模型。

OMV-OMC质量:我们进一步研究了VAST-27M数据集中OMV和OMC之间的对应关系质量,并主要与VALOR-1M数据集进行比较。所有模型都进行了50K步训练,目标为LOM,且在预训练和微调中都使用了所有模态。结果如表6所示。从表中可以看出,在VAST-27M上进行全模态预训练显著提高了在所有7个基准上的性能,相比于基线。此外,VAST-27M在MSRVTT和YouCook2数据集的5个基准上超越了VALOR-1M,但在VALOR-32K基准上稍逊一筹,原因是VALOR-1M和VALOR-32K之间的视频分布和描述风格保持一致。作为额外实验,我们在VAST-27M上训练了模型(c),但用简单地将视觉描述、音频描述和字幕拼接起来代替了LLM生成的全模态描述。模型(d)在所有基准上均优于模型(c),展示了利用LLM强大能力将单模态描述整合为全模态描述的必要性和有效性。

在这里插入图片描述
在这里插入图片描述

5.4 消融实验

我们对使用不同模态的视频表示进行预训练和微调的模型进行了全面的消融研究,以展示全模态基础模型预训练的优势和必要性。模型在MSRVTT(开放域)、YouCook2(以字幕为主)和VALOR-32K(以音频为主)基准上进行评估。结果如表7所示,在没有预训练的情况下,训练时包含音频和字幕的模型(d)在所有基准上均优于仅视觉的基线模型。应用全模态预训练后,在大多数基准上的提升更加明显,这可以通过比较模型(f)和模型(d)中绿色数值的差异来反映,证明了所提出方法的有效性。
在这里插入图片描述

此外,模型(i)在所有基准上均超越模型(f),表明与V-T能力相似,OMV-OMC能力也从大规模预训练中受益。值得注意的是,模型(h)和(f)在VALOR-32K基准上的表现逊色于模型(g)甚至视觉基线(e)。这种退化可以归因于预训练和微调之间的不一致性,在VAST-27M中所有片段都有字幕,而VALOR-32K中的大多数视频缺少字幕。

当应用模态分组策略时,模型(j)展示了在所有类型任务上的良好泛化能力,因为在预训练过程中已经探索了文本和每个模态组之间的关联。

6. 结论、广泛影响和局限性

在本文中,我们介绍了VAST-27M语料库,这是一个大规模全模态视频描述数据集,旨在推动多模态预训练研究的发展。数据集中的每个视频片段都配有自动生成的视觉和音频描述,以及一个全模态描述,该描述通过现有的大型语言模型(LLM)整合了来自视觉、音频和字幕的信息。我们还训练了一个统一的基础模型,名为VAST,能够理解和连接视频和描述中的各种模态。通过广泛的评估,VAST在多个视觉-文本、音频-文本和多模态视频-文本任务中表现出了其有效性,包括检索、描述和问答,并在公共跨模态基准上超越了现有的最先进方法。

视频内容的多模态理解和生成的进展,可以对娱乐、教育、安全、交通和医疗等多个领域产生重大影响。全模态基础模型的发展,如VAST-27M和VAST,可以为这些领域的进步和实际应用做出贡献。然而,必须承认我们方法的局限性。例如,除了VAST-27M之外,还需要更多多样化和大规模的全模态语料库。此外,尽管VAST已经支持广泛的下游任务,但集成LLM是进一步增强其泛化能力的必要条件。此外,由于VAST-27M数据集的收集过程使用了LLM,并且视频和音频描述生成器的训练使用了一些开源的跨模态语料库,因此VAST-27M数据集和VAST模型可能会受到这些数据集和模型的相同偏差影响。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值