[CF715B]Complete The Graph

122 篇文章 0 订阅
89 篇文章 0 订阅

题目

传送门 to CF

传送门 to luogu

思路

考虑直接打通这条路!那么类似于做一个最小生成树。也就是说,每次给未知边 ⟨ u , v ⟩ \lang u,v\rang u,v 赋权值,其满足 u ∈ T , v ∉ T u\in T,v\notin T uT,v/T(这里 T T T 是已得到的 “生成树”),于是 d i s v dis_v disv 就得到了。

然后你会发现不对。因为有些边是固定的,它会导致我们所认为的 d i s dis dis 偏大。那么悬崖勒马,直接把 “未知边” 设置为 1 1 1 来修正这一情况。可是此时怎么调整出 L L L 呢?

其实我们有两步。第一步,让最短路不能小于 L L L 。第二步,让最短路恰好为 L L L革命必须分成两步走。

所以我们再跑一次最短路。在运行过程中,我们尽量让新的 d i s ′ dis' dis 变大,使其成为 d i s + f dis+f dis+f,这里 f = L − d i s t f=L-dis_t f=Ldist 即差距。让 d i s dis dis 增大是第一步的要求,让它只增大到 d i s + f dis+f dis+f 是第二步的要求。

正确性如何?考虑任意一个点的前驱,它既不会过大,也不会太小。所以我们每个点的要求都是最容易达到的。所以最终 d i s t ′ = L dis'_t=L dist=L 是最容易达到的。

复杂度 O ( n log ⁡ n ) \mathcal O(n\log n) O(nlogn)    0202    \sout{\;0202\;} 0202年了不会还有人用    s p f a    \sout{\;\rm spfa\;} spfa吧?

代码

#include <cstdio>
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
inline int readint(){
	int a = 0; char c = getchar(), f = 1;
	for(; c<'0'||c>'9'; c=getchar())
		if(c == '-') f = -f;
	for(; '0'<=c&&c<='9'; c=getchar())
		a = (a<<3)+(a<<1)+(c^48);
	return a*f;
}
inline void writeint(int x){
	if(x > 9) writeint(x/10);
	putchar((x-x/10*10)^48);
}

const int MaxN = 20005;

struct Edge{
	int to, nxt, val;
	Edge(){ }
	Edge(int T,int N,int W){
		to = T, nxt = N, val = W;
	}
};
Edge e[MaxN];
int head[MaxN], cntEdge;
void addEdge(int a,int b,int c){
	e[cntEdge] = Edge(b,head[a],c);
	head[a] = cntEdge ++;
}

int dis[MaxN], n, L;
bool vis[MaxN];
void dijkstra(int from){
	for(int i=0; i<n; ++i)
		dis[i] = L+1, vis[i] = 0;
	dis[from] = 0;
	for(int i=0,id; i<n; ++i){
		for(int j=0*(id=-1); j<n; ++j){
			if(vis[j]) continue;
			if(!~id || dis[j] < dis[id])
				id = j; // minimum
		}
		if(!~id || dis[id] == L+1)
			return ; // nothing to do
		vis[id] = true;
// printf("dis[%d] = %d\n",id,dis[id]);
		if(dis[id] > L) dis[id] = L+1;
		for(int i=head[id]; ~i; i=e[i].nxt){
			int x = dis[id]+e[i].val;
			if(!e[i].val) ++ x; // w = 1
			if(dis[e[i].to] > x)
				dis[e[i].to] = x;
		}
	}
}

int tmp[MaxN];
void bfs(int from,int f){
	for(int i=0; i<n; ++i)
		tmp[i] = L+1, vis[i] = 0;
	tmp[from] = 0;
	for(int i=0,id; i<n; ++i){
		id = -1; // not used
		for(int j=0; j<n; ++j){
			if(vis[j]) continue;
			if(!~id || tmp[j] < tmp[id])
				id = j; // minimum
		}
		if(!~id || tmp[id] == L+1)
			return ; // nothing to do
		vis[id] = true;
		if(tmp[id] > L) tmp[id] = L+1;
		for(int i=head[id]; ~i; i=e[i].nxt){
			if(e[i].val == 0){
				e[i].val = dis[e[i].to];
				e[i].val += f-tmp[id];
				if(e[i].val < 1) // at least
					e[i].val = 1;
				if(e[i].val > L) // at most
					e[i].val = L;
			}
			int x = tmp[id]+e[i].val;
			if(tmp[e[i].to] > x)
				tmp[e[i].to] = x;
		}
	}
}

int main(){
	n = readint();
	int m = readint();
	L = readint();
	int zxy = readint();
	int sxy = readint();
	for(int i=0; i<n; ++i)
		head[i] = -1;
	for(int i=0,a,b,c; i<m; ++i){
		a = readint(), b = readint();
		addEdge(a,b,c = readint());
		addEdge(b,a,c); // undirectly
	}
	dijkstra(zxy), bfs(zxy,L-dis[sxy]);
	if(tmp[sxy] == L){
		puts("YES");
		for(int i=0; i<cntEdge; i+=2){
			writeint(e[i].to);
			putchar(' ');
			writeint(e[i^1].to);
			putchar(' ');
			int x = max(e[i].val,e[i^1].val);
			if(!x) x = L+1; // casually
			writeint(x), putchar('\n');
		}
	}
	else puts("NO");
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 图神经网络模型(Graph Neural Network Model)是一种基于图结构的深度学习模型,用于处理图数据。它可以对节点和边进行特征提取和表示学习,从而实现对图数据的分类、聚类、预测等任务。该模型在社交网络、化学分子结构、推荐系统等领域有广泛应用。 ### 回答2: 图神经网络(Graph Neural Network Model,GNN)是一种新兴的人工智能技术,主要应用于图像、文本、语音等非结构化数据的分析和处理。与传统的神经网络相比,GNN不仅可以处理标量和向量数据,还可以有效地处理图结构数据。该算法已经被广泛应用于社交网络和推荐系统等领域。 GNN的核心思想是将图结构数据转化为节点特征向量。在传统的神经网络计算中,每个节点都有自己的参数和输入,GNN则不同,它通过传递和聚集节点之间的信息来学习高维特征数据。这种信息传递和聚集的过程可以通过使用邻接矩阵和节点度等数学工具来实现。 GNN的训练过程可以使用反向传播算法完成,与常规神经网络的训练过程类似。在应用于图像数据分类问题时,GNN可以通过多个学习层来提高准确性。这个技术的成功还在于GNN可以对图像的部分进行处理,而不是整个图像,从而提高了训练和测试的效率。 GNN技术的优势在于,它可以处理复杂的非线性数据,而且可以基于节点、边缘、子图等多种粒度进行分析。此外,GNN还可以处理不明确的、不完整的或噪声丰富的数据。例如,它可以在社交网络中预测用户的兴趣,或在进化发育生物学中预测蛋白质之间的交互。 总之,GNN是一种具有广泛应用前景的新型人工智能技术,其可以更好地解决图像分类、社交网络分析、蛋白质预测等问题。它将成为未来智能分析和推荐系统的重要组成部分。 ### 回答3: 图神经网络(Graph Neural Network,GNN)是一种用于解决结构化数据(例如图、网格等)的机器学习模型。它是神经网络的一种扩展,能够利用节点和边之间的关系信息进行学习。与传统的神经网络不同的是,图神经网络是针对图等结构化数据的设计。 图神经网络的核心思想是将节点和边的表示融合起来,实现对图结构的整体建模。通过将节点和边的特征进行编码,可以学习到可以表达节点和边之间关系的空间嵌入向量。在这些向量的基础上,可以进行下一层节点和边的编码,并通过多层的神经网络来逐渐提高对图结构的建模能力。 目前,图神经网络在多个领域得到了广泛应用,例如化学分子分析、社交网络分析、3D建模等。在化学领域,图神经网络可以从化学分子的结构中预测化学性质,如溶解度、反应性等。在社交网络分析中,它可以对用户关系进行建模,并预测社交网络中用户的行为。在3D建模中,图神经网络可以对点云数据进行建模,并生成复杂的三维物体。 总之,图神经网络是一种适用于结构化数据的机器学习模型,可以从节点和边特征中学习到图结构中的信息并进行整体建模。它在各种领域得到了广泛应用,为研究者提供了一种有效的工具来分析和处理结构化数据。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值