神犇和蒟蒻

题目

传送门 to VJ

题目描述
给定 n ( 1 ≤ n ≤ 1 0 9 ) n(1\le n\le 10^9) n(1n109) ,求下列两个值取模 1 0 9 + 7 10^9+7 109+7 后的结果。

∑ i = 1 n μ ( i 2 ) ,    ∑ i = 1 n φ ( i 2 ) \sum_{i=1}^{n}\mu(i^2),\;\sum_{i=1}^{n}\varphi(i^2) i=1nμ(i2),i=1nφ(i2)

思路

对于第一个,直接输出 1 1 1 就好了……定义告诉我们,指数为 2 2 2 就会凉。只有 μ ( 1 2 ) = 1 \mu(1^2)=1 μ(12)=1 可以挽回一些局面。

对于第二个,不难发现 φ ( i 2 ) = i ⋅ φ ( i ) \varphi(i^2)=i\cdot\varphi(i) φ(i2)=iφ(i) 。证明方法很多,我给两个比较好理解的,否则这篇博客就太短啦

等价转化

φ ( x 2 ) = ∑ i = 1 x 2 [ gcd ⁡ ( i , x 2 ) = 1 ] = ∑ i = 1 x 2 [ gcd ⁡ ( i , x ) = 1 ] = ∑ i = 1 x 2 [ gcd ⁡ ( i   m o d   x , x ) = 1 ] = ∑ d = 1 x [ gcd ⁡ ( d , x ) = 1 ] ∑ i ≡ d ( m o d x ) 1 = ∑ d = 1 x [ gcd ⁡ ( d , x ) = 1 ] ⋅ x = x ⋅ φ ( x ) \begin{aligned} \varphi(x^2)&=\sum_{i=1}^{x^2}[\gcd(i,x^2)=1]\\ &=\sum_{i=1}^{x^2}[\gcd(i,x)=1]\\ &=\sum_{i=1}^{x^2}[\gcd(i\bmod x,x)=1]\\ &=\sum_{d=1}^{x}[\gcd(d,x)=1]\sum_{i\equiv d\pmod{x}}1\\ &=\sum_{d=1}^{x}[\gcd(d,x)=1]\cdot x\\ &=x\cdot\varphi(x) \end{aligned} φ(x2)=i=1x2[gcd(i,x2)=1]=i=1x2[gcd(i,x)=1]=i=1x2[gcd(imodx,x)=1]=d=1x[gcd(d,x)=1]id(modx)1=d=1x[gcd(d,x)=1]x=xφ(x)

狄利克雷

φ ( x 2 ) = ∑ d ∣ x 2 μ ( d ) ⋅ x 2 d = x ∑ d ∣ x μ ( d ) ⋅ x d = x ⋅ φ ( x ) \begin{aligned} \varphi(x^2)&=\sum_{d|x^2}\mu(d)\cdot {x^2\over d}\\ &=x\sum_{d|x}\mu(d)\cdot{x\over d}\\ &=x\cdot \varphi(x) \end{aligned} φ(x2)=dx2μ(d)dx2=xdxμ(d)dx=xφ(x)

用上 φ = μ ∗ I d \varphi=\mu*I_d φ=μId 就非常好推呀!并且这个方向也比较自然。

当然, d ∣ x 2 d|x^2 dx2 变为 d ∣ x d|x dx 也是比较重要的操作。

最后一步,直接杜教筛即可。用 I d I_d Id 去筛。

代码

#include <cstdio>
#include <iostream>
#include <vector>
#include <cstring>
using namespace std;
typedef long long int_;
inline int readint(){
	int a = 0; char c = getchar(), f = 1;
	for(; c<'0'||c>'9'; c=getchar())
		if(c == '-') f = -f;
	for(; '0'<=c&&c<='9'; c=getchar())
		a = (a<<3)+(a<<1)+(c^48);
	return a*f;
}

const int MaxN = 5e6;
const int Mod = 1e9+7;
const int inv2 = (Mod+1)>>1;
const int inv3 = (Mod+1)/3;
vector< int > primes;
bool isPrime[MaxN];
int phi[MaxN], f[MaxN];
void sievePrime(){
	memset(isPrime+2,1,MaxN-2);
	f[1] = phi[1] = 1;
	for(int i=2,len=0; i<MaxN; ++i){
		if(isPrime[i]){
			primes.push_back(i);
			++ len, phi[i] = i-1;
		}
		f[i] = 1ll*i*phi[i]%Mod;
		for(int j=0,x; j<len; ++j){
			if((x = primes[j]*i) >= MaxN)
				break; // good try
			isPrime[x] = false;
			if(i%primes[j] == 0){
				phi[x] = phi[i]*primes[j];
				break;
			}
			phi[x] = phi[i]*(primes[j]-1);
		}
	}
	for(int i=2; i<MaxN; ++i)
		f[i] = (f[i]+f[i-1])%Mod;
}

const int SqrtN = 200005;
int haxi[2][SqrtN];
# define index_(x) (((x) >= SqrtN) ? haxi[1][n/(x)] : haxi[0][x])
int w[SqrtN<<1]; // f(xez[x])
int_ xez[SqrtN<<1]; // from haxi to real
int djs(int_ n){ // Dc.Du sieve
	int id = 0; // allocate index
	for(int_ i=1; i<=n; i=n/(n/i)+1){
		index_(n/i) = ++ id;
		xez[id] = n/i; // real value
	}
	int_ x; // for convenience
	for(int i=id; i>=1; --i){
		if((x = xez[i]) < MaxN){
			w[i] = f[x]; continue;
		}
		w[i] = ((x<<1)+1)*x%Mod
			*(x+1)%Mod*inv2%Mod
			*inv3%Mod; // sum x^2
		int lst = 1, now; // init 1
		for(int_ l=2,r; l<=x; l=r+1){
			r = x/(x/l);
			now = (r*(r+1)>>1)%Mod;
			w[i] -= 1ll*(now-lst)
				*w[index_(x/l)]%Mod;
			w[i] = (w[i]%Mod+Mod)%Mod;
			lst = now; // move on
		}
	}
//	for(int i=id; i>=1; --i)
//		printf("f[%lld] = %d\n",xez[i],w[i]);
	return w[1]; // maximum = n
}

int main(){
	int_ n; scanf("%lld",&n);
	sievePrime();
	printf("1\n%d\n",djs(n));
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值