逆元

逆元与逆元存在的条件

设 inv[b] 是 b 的逆元, 那么 (a/b) %p = (a*inv[b]) %p

一个数 x 在模 p 的条件下不一定有逆元, x 关于 p 的逆元存在 当且仅当 x 和 p 互质
这里有一个推导: (设 a 为 x 的逆元, b为任意整数)
在这里插入图片描述

求法一:基于费马小定理的快速幂

只有在 p 是质数的情况下才可以使用

首先我们设 inv(a) 是 a 的逆元 那么根据定义, inv(a)∗a≡1(mod p)
再根据 费马小定理 ap−1≡1 , 易得 inv(a)∗a≡ap−1(mod p)
移项,得: inv(a)≡ap−2
于是我们得到了快速幂模算法的一个前提条件: inv(a)≡ap−2(mod p)

int n,p; 
int ksm(int x,int y)
{
	int ret=1;
	while(y)
	{
		if(y&1) ret=ret*x%p;
		x=x*x%p;
		y=y>>1;
	}
	return ret;
}
int main()
{
	n=read();p=read();
	for(int i=1;i<=n;i++)
	{
		printf("%d",ksm(i,p-2));
	}
	return 0;
}

求法二:扩欧

a和b互质,条件更宽松

不加证明的给出代码

void exgcd(ll a,ll b,ll &x,ll &y)
{
	if(b==0)
	{
		x=1;y=0;return ;
	}
	exgcd(b,a%b,x,y);
	ll t=x;x=y;y=t-(a/b)*y;
}
int main()
{
	n=read();p=read();
	for(ll i=1;i<=n;i++)
	{
		ll inv,y;
		exgcd(i,p,inv,y);
		inv=(inv+p)%p;
		cout<<inv<<endl;
	}
	return 0;
}
	inv[1]=1;
	cout<<1<<endl; 
	for(i=2;i<=n;i++)
	{
		inv[i]=(p-(p/i))*inv[p%i]%p;
		printf("%d\n",inv[i]);
	}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值