332. 重新安排行程

题目描述

给你一份航线列表 tickets ,其中 tickets[i] = [fromi, toi] 表示飞机出发和降落的机场地点。请你对该行程进行重新规划排序。

所有这些机票都属于一个从 JFK(肯尼迪国际机场)出发的先生,所以该行程必须从 JFK 开始。如果存在多种有效的行程,请你按字典排序返回最小的行程组合。

  • 例如,行程 ["JFK", "LGA"]["JFK", "LGB"] 相比就更小,排序更靠前。

假定所有机票至少存在一种合理的行程。且所有的机票 必须都用一次 且 只能用一次。

示例 1:

在这里插入图片描述

输入:tickets = [["MUC","LHR"],["JFK","MUC"],["SFO","SJC"],["LHR","SFO"]]
输出:["JFK","MUC","LHR","SFO","SJC"]

示例 2:

在这里插入图片描述

输入:tickets = [["JFK","SFO"],["JFK","ATL"],["SFO","ATL"],["ATL","JFK"],["ATL","SFO"]]
输出:["JFK","ATL","JFK","SFO","ATL","SFO"]
解释:另一种有效的行程是 ["JFK","SFO","ATL","JFK","ATL","SFO"] ,但是它字典排序更大更靠后。

提示:

  • 1 <= tickets.length <= 300
  • tickets[i].length == 2
  • fromi.length == 3
  • toi.length == 3
  • fromitoi 由大写英文字母组成
  • fromi != toi

解答

class Solution {
public:
    // unordered_map<出发机场, map<到达机场, 航班数>>
    unordered_map<string, map<string, int>> targets;
    vector<string> findItinerary(vector<vector<string>>& tickets) {
        targets.clear();
        vector<string> res;
        for(const vector<string> & vec:tickets)
        {
            targets[vec[0]][vec[1]]++; // 记录
        }
        res.push_back("JFK"); 
        backtrack(tickets.size(), res);
        return res;
    }
    bool backtrack(int ticketNum, vector<string> &res)
    {
        // n张机票有n+1个地点(边和点的关系)
        // 结果集长度为 ticketNum + 1 表示找到结果
        if(res.size() == ticketNum + 1) 
        {
            return true;
        }

        // 以当前终点去targets找下一个终点
        for(pair<const string, int > &target : targets[res[res.size() - 1]])
        {
            if(target.second > 0) // 判断票是否用完
            {
                res.push_back(target.first);
                target.second--;
                // 回溯过程中找到结果直接返回
                if(backtrack(ticketNum, res)) return true;
                res.pop_back();
                target.second++;
            }
        }
        return false;
    }
};
思路: 1. 先建立一个图,用邻接表表示。遍历tickets数组,以出发城市为键,以到达城市为值,将所有相同出发城市的到达城市加入到对应的键的值列表。 2. 对每个出发城市的到达城市列表进行排序,保证按字母顺序进行访问。 3. 从"JFK"出发,进行深度优先遍历。如果当前城市的到达城市列表不为空,则按顺序访问列表中的城市,并将访问过的城市从列表中删除。 4. 如果当前城市没有到达城市或者到达城市已经全部被访问过了,则将当前城市加入结果列表的头部。 5. 最后得到的结果列表,逆序输出即可得到答案。 代码实现如下: ```python from collections import defaultdict def findItinerary(tickets): # 用于保存图 graph = defaultdict(list) # 将tickets中的数据存入图 for ticket in tickets: src, dst = ticket graph[src].append(dst) # 按照字母顺序对到达城市进行排序 for src in graph: graph[src].sort() def dfs(city): # 当前城市的到达城市列表 destinations = graph[city] while destinations: # 递归遍历下一个城市 dfs(destinations.pop(0)) # 将当前城市加入结果列表 result.insert(0, city) # 结果列表 result = [] dfs("JFK") return result # 测试 tickets = [["MUC","LHR"],["JFK","MUC"],["SFO","SJC"],["LHR","SFO"]] print(findItinerary(tickets)) # 输出:['JFK', 'MUC', 'LHR', 'SFO', 'SJC'] ``` 复杂度分析: - 时间复杂度:建立图的过程需要遍历tickets数组,时间复杂度为O(n),其中n为数组的长度。遍历图的过程中,所有的边都会被访问一次,时间复杂度为O(m),其中m为图中的边数。因此,总的时间复杂度为O(n+m)。 - 空间复杂度:使用了一个字典来保存图,空间复杂度为O(m),其中m为图中的边数。递归调用的深度为图中的边数+1,空间复杂度为O(m+1)。最后返回的结果列表的空间复杂度为O(n),其中n为结果列表的长度。因此,总的空间复杂度为O(m+n)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值