用matlab给混沌(chaos系统)上一点“润滑剂”,用了都说好棒,好爽!

本文介绍了混沌序列的生成,特别是Logistic混沌序列,通过MATLAB的ode45函数模拟蔡氏电路混沌方程。ode45是解决非刚性常微分方程的首选,用于混沌系统的数值解。此外,文章讨论了如何使用取整和取余函数作为‘润滑剂’来处理混沌序列,将其转化为0.1序列,可用于数据操作。
摘要由CSDN通过智能技术生成

混沌序列如何产生

这篇文章是讲logistic混沌序列的

logistic混沌序列是由迭代产生的
但是这是最简单的混沌序列产生方法,但是其实大多数的混沌序列是通过微分方程来产生的(嗯嗯,应该是这样的哦)
MATLAB提供了求常微分方程数值解的函数。当难以求得微分方程的解析解时,可以求其数值解,Matlab中求微分方程数值解的函数有七个:ode45,ode23,ode113,ode15s,ode23s,ode23t,ode23tb 。
这里详细介绍一下ode45函数:
ode45表示采用四阶-五阶Runge-Kutta算法,它用4阶方法提供候选解,5阶方法控制误差,是一种自适应步长(变步长)的常微分方程数值解法,其整体截断误差为(Δx)^5。解决的是Nonstiff(非刚性)常微分方程。
【前方高能:】蔡氏电路混沌方程就是非刚性的!
ode45是解决数值解问题的首选方法,若长时间没结果,应该就是刚性的,可换用ode15s试试。


[T,Y] = ode45(odefun,tspan,y0)
odefun 是函数句柄,可以是函数文件名,匿名函数句柄或内联函数名
tspan 是区间 [t0 tf] 或者一系列散点[t0,t1,…,tf]
y0 是初始值向量
T 返回列向量的时间点
Y 返回对应T的求解列向量

tspan=[0,100];
y0=[0.025;-0.022;0.8];
[tt,yy]=ode45(@DyDt,tspan,y0);

下面是ode45用到的内联函数:(微分方程是可以变化的,我们又可以得到不同的混沌序列)

function ydot = DyDt( t,y)
ydot=[9*(y(2)-y(1)+0.68*y(1)-0.5*(-1.27+0.68)*(abs(y(1)+1)-abs(y(1)-1)));
      y(1)-y(2)+y(3);
      -14.87*y(2)];
end 

[T,Y] = ode45(odefun,tspan,y0,options)
options 是求解参数设置,可以用odeset在计算前设定误差,输出参数,事件等

options=odeset('RelTol',1e-4,'AbsTol',[1e-4 1e-4 1e-4]); %设置解微分方程的相对误差和绝对误差

我们可以看一下仿真的蔡氏混沌的相图

在这里插入图片描述

我们如何添加“润滑剂”

取整四法

函数如何取整
fix截尾取整
floor不超过x的最大整数(高斯取整)
ceil大于x的最小整数
round四舍五入取整

取余双法

函数如何取余
mod(m,n)m对n取余
rem(m,n)m对n取余

当m,m为整数的时候,rem(m,n)=mod(m,n),若不是整数,mod好像得不到准确的结果,而rem可以得到。

我们可以看一下代码格式和润滑效果

下面是其中一种组合,其他的组合就不放了,可以自己尝试一下:

k1=mod(fix(abs(yy(:,1))*10^14),2)

处理前的混沌序列

在这里插入图片描述

处理后的序列

在这里插入图片描述
处理后的序列是0.1序列了,0.1序列就可以用来做数据的异或之类的神奇操作啦!!!

同学们,下课哦!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值