扩展欧拉定理学习笔记

扩展欧拉定理:对于任意的 a , n a,n a,n,取 k ≥ φ ( n ) k\ge \varphi(n) kφ(n),则 a k ≡ a k   m o d   φ ( n ) + φ ( n ) ( m o d n ) a^k\equiv a^{k\bmod \varphi(n)+\varphi(n)}\pmod n akakmodφ(n)+φ(n)(modn)


粗略证明:

首先证明 n = p t ( t ≥ 1 ) n=p^t(t\ge 1) n=pt(t1)时的定理。

不妨设 a = x p y , ( x , p ) = 1 a=xp^y,(x,p)=1 a=xpy,(x,p)=1,则只需证 x k p y k ≡ x k   m o d   φ ( n ) + φ ( n ) p y ( k   m o d   φ ( n ) + φ ( n ) ) ( m o d n ) x^kp^{yk}\equiv x^{k\bmod\varphi(n)+\varphi(n)}p^{y(k\bmod\varphi(n)+\varphi(n))}\pmod n xkpykxkmodφ(n)+φ(n)py(kmodφ(n)+φ(n))(modn)

显然,由欧拉定理可得, x k ≡ x k   m o d   φ ( n ) + φ ( n ) ( m o d n ) x^k\equiv x^{k\bmod\varphi(n)+\varphi(n)}\pmod n xkxkmodφ(n)+φ(n)(modn)

只需证 p y k ≡ p y ( k   m o d   φ ( n ) + φ ( n ) ) ( m o d n ) p^{yk}\equiv p^{y(k\bmod\varphi(n)+\varphi(n))}\pmod n pykpy(kmodφ(n)+φ(n))(modn)

φ ( p t ) = ( p − 1 ) p t − 1 ≥ p t − 1 ≥ t \varphi(p^t)=(p-1)p^{t-1}\ge p^{t-1}\ge t φ(pt)=(p1)pt1pt1t

因此,当 y = 0 y=0 y=0时,等式两侧均为 1 1 1;当 y ≥ 1 y\ge 1 y1时, y k ≥ y ( k   m o d   φ ( n ) + φ ( n ) ) ≥ φ ( n ) ≥ t yk\ge y(k\bmod\varphi(n)+\varphi(n))\ge \varphi(n)\ge t yky(kmodφ(n)+φ(n))φ(n)t,故等式两侧均为 0 0 0,证毕。


原定理的证明:

考虑一下定理的意义,其实就相当于 x k x^k xk的循环节长度整除 φ ( n ) \varphi(n) φ(n),而循环节起始位置 ≤ φ ( n ) \le \varphi(n) φ(n)

n n n质因子分解,设其中一项为 p t p^t pt,则显然 φ ( p t ) ∣ φ ( n ) \varphi(p^t)|\varphi(n) φ(pt)φ(n) φ ( p t ) ≤ φ ( n ) \varphi(p^t)\le\varphi(n) φ(pt)φ(n)

因此, a k ≡ a k   m o d   φ ( n ) + φ ( n ) ( m o d p t ) a^k\equiv a^{k\bmod \varphi(n)+\varphi(n)}\pmod {p^t} akakmodφ(n)+φ(n)(modpt)

考虑到这个式子对所有 p t p^t pt成立,故对 n n n也成立,证毕。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值