LCT复杂度分析

该博客详细分析了LCT(Lightweight Concurrency Tools)数据结构中的access、makeroot、link和cut四种操作的复杂度。通过重链剖分、权值w(x)和s(x)的定义以及势函数Φ的组成部分,博主阐述了如何在均摊意义上达到O(logn)的时间复杂度。通过对不同操作中重虚边和轻虚边变化的讨论,证明了每个操作的效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LCT复杂度分析

首先对维护的树进行重链剖分。

定义节点 x x x 的权值 w ( x ) w(x) w(x) 为其下方挂的虚儿子的子树大小和加 1 1 1 。定义权值 s ( x ) s(x) s(x) x x x 在所属 s p l a y splay splay 中对应子树的 w w w 和。取势函数 Φ = Φ 1 + Φ 2 \Phi=\Phi_1+\Phi_2 Φ=Φ1+Φ2 ,其中 Φ 1 \Phi_1 Φ1 为 “重虚边” 的个数, Φ 2 = ∑ u ∈ T log ⁡ s ( u ) \Phi_2=\sum_{u\in T}\log s(u) Φ2=uTlogs(u)


考虑 a c c e s

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值