考研数学若干题解析

1. 微积分

1.1 周期性

  1. f ( x ) f(x) f(x)是以 T T T为周期的连续可微函数,下列函数中以 T T T为周期的是:

    1. ∫ a x f ( x ) d t \int_a^xf(x)dt axf(x)dt
    2. ∫ a x f ( t 2 ) d t \int_a^xf(t^2)dt axf(t2)dt
    3. ∫ a x f ′ ( x ) d t \int_a^xf'(x)dt axf(x)dt
    4. ∫ a x f ( t ) f ′ ( t ) d t \int_a^xf(t)f'(t)dt axf(t)f(t)dt

解答:正确答案为 ∫ 0 x f ( t ) f ′ ( t ) d t \int_0^xf(t)f'(t)dt 0xf(t)f(t)dt,分为两步
首先,求出原函数:
∫ a x f ( t ) f ′ ( t ) d t = ∫ a x f ( t ) d f ( t ) = 1 2 [ f ( t ) ] 2 ∣ t = a t = x = 1 2 ( [ f ( x ) ] 2 − [ f ( a ) ] 2 ) \begin{aligned} \int_a^xf(t)f'(t)dt & = \int_a^xf(t)df(t) \\ & = \frac{1}{2}[f(t)]^2\big| _{t=a}^{t=x} \\ & = \frac{1}{2}\left([f(x)]^2 - [f(a)]^2 \right) \end{aligned} axf(t)f(t)dt=axf(t)df(t)=21[f(t)]2t=at=x=21([f(x)]2[f(a)]2)
其次,验证周期性:
F ( x + T ) = 1 2 ( [ f ( x + T ) ] 2 − [ f ( a ) ] 2 ) = f ( x + T ) = f ( x ) 1 2 ( [ f ( x ) ] 2 − [ f ( a ) ] 2 ) = F ( x ) \begin{aligned} F(x+T) & = \frac{1}{2}\left([f(x+T)]^2 - [f(a)]^2 \right)\\ & \overset{f(x+T) = f(x)}{=}\frac{1}{2}\left([f(x)]^2 - [f(a)]^2 \right)\\ & = F(x) \end{aligned} F(x+T)=21([f(x+T)]2[f(a)]2)=f(x+T)=f(x)21([f(x)]2[f(a)]2)=F(x)
因此选择4选项。

2. 无穷级数

2.1 级数展开

  1. 试将 x 3 \sqrt{x^3} x3 x = 1 x=1 x=1处级数展开。
    :
    在解决这个问题之前,先复习一下级数公式,
    ( 1 + x ) α = ∑ n = 0 ∞ α ( α − 1 ) ⋯ ( α − n + 1 ) n ! x n (2.1) (1+x)^\alpha = \sum_{n=0}^{\infty}\frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^n \tag{2.1} (1+x)α=n=0n!α(α1)(αn+1)xn(2.1)
    其中 − 1 < x < 1 -1<x<1 1<x<1
    n n n项奇数阶乘公式:
    1 ⋅ 3 ⋅ 5 ⋯ ( 2 n + 1 ) ⏟ n 项 = ( 2 n + 1 ) ! n ! 2 n (2.2) \underbrace{1\cdot 3 \cdot 5 \cdots (2n+1)}_{n项} = \frac{(2n+1)!}{n!2^n} \tag{2.2} n 135(2n+1)=n!2n(2n+1)!(2.2)
    再做一个算例:
    3 2 ⋅ ( 3 2 − 1 ) ⋅ ( 3 2 − 2 ) ⋯ [ 3 2 − ( n − 1 ) ] = ∏ i = 0 n − 1 ( 3 2 − i ) = ∏ i = 0 n − 1 ( 3 − 2 i 2 ) = 1 2 n ∏ i = 0 n − 1 ( 3 − 2 i ) = 1 2 n ⋅ 3 ⋅ 1 ⋅ ( − 1 ) ⋅ ( − 3 ) ⋯ ( 5 − 2 n ) ⏟ n − 2 项 = 3 2 n ( − 1 ) n − 2 ( 2 n − 3 ) ! ( n − 2 ) ! 2 n − 2 (2.3) \frac{3}{2} \cdot (\frac{3}{2}-1) \cdot(\frac{3}{2}-2) \cdots [\frac{3}{2}-(n-1)]=\prod_{i=0}^{n-1}(\frac{3}{2}-i) = \prod_{i=0}^{n-1}(\frac{3-2i}{2})\\ \begin{aligned} & = \frac{1}{2^n} \prod_{i=0}^{n-1}(3-2i)=\frac{1}{2^n} \cdot 3 \cdot 1 \underbrace{\cdot (-1) \cdot (-3) \cdots (5-2n)}_{n-2项} \\ &= \frac{3}{2^n}(-1)^{n-2}\frac{(2n-3)!}{(n-2)!2^{n-2}} \end{aligned} \tag{2.3} 23(231)(232)[23(n1)]=i=0n1(23i)=i=0n1(232i)=2n1i=0n1(32i)=2n131n2 (1)(3)(52n)=2n3(1)n2(n2)!2n2(2n3)!(2.3)
    那么:
    x 3 = [ 1 + ( x − 1 ) ] 3 2 = ( 2.3 ) 1 + 3 2 ( x − 1 ) + ∑ n = 2 ∞ 3 2 ⋅ ( 3 2 − 1 ) ⋅ ( 3 2 − 2 ) ⋯ [ 3 2 − ( n − 1 ) ] n ! ( x − 1 ) n = 1 + 3 2 ( x − 1 ) + ∑ n = 2 ∞ 3 ( − 1 ) n − 2 ( 2 n − 3 ) ! 2 n − 2 n ! ( n − 2 ) ! ( x − 1 2 ) n = 1 + 3 2 ( x − 1 ) + ∑ n = 0 ∞ 3 ( − 1 ) n ( 2 n − 1 ) ! 2 n − 2 n ! ( n − 2 ) ! ( x − 1 2 ) n = 1 + 3 2 ( x − 1 ) + ∑ n = 0 ∞ ( − 1 ) n ( 2 n − 1 ) ! ( n ! ) 2 3 ( n + 1 ) ( n + 2 ) 2 n ( x − 1 2 ) n \begin{aligned} \sqrt{x^ 3} & = \left[ 1+(x-1) \right]^{\frac{3}{2}} \\ & \overset{(2.3)} = 1 + \frac{3}{2}(x-1) + \sum_{n=2}^{\infty} \frac{\frac{3}{2} \cdot (\frac{3}{2}-1) \cdot(\frac{3}{2}-2) \cdots [\frac{3}{2}-(n-1)]}{n!} (x-1)^n \\ & = 1 + \frac{3}{2}(x-1) + \sum_{n=2}^{\infty} \frac{3(-1)^{n-2}(2n-3)!}{2^{n-2}n!(n-2)!} \left(\frac{x-1}{2} \right)^n \\ & = 1 + \frac{3}{2}(x-1) + \sum_{n=0}^{\infty} \frac{3(-1)^n(2n-1)!}{2^{n-2}n!(n-2)!} \left(\frac{x-1}{2} \right)^n \\ & = 1 + \frac{3}{2}(x-1) + \sum_{n=0}^{\infty}(-1)^n\frac{(2n-1)!}{(n!)^2}\frac{3}{(n+1)(n+2)2^n} \left(\frac{x-1}{2} \right)^n \end{aligned} x3 =[1+(x1)]23=(2.3)1+23(x1)+n=2n!23(231)(232)[23(n1)](x1)n=1+23(x1)+n=22n2n!(n2)!3(1)n2(2n3)!(2x1)n=1+23(x1)+n=02n2n!(n2)!3(1)n(2n1)!(2x1)n=1+23(x1)+n=0(1)n(n!)2(2n1)!(n+1)(n+2)2n3(2x1)n

2.2 无穷级数化简

  1. 已知 p + q = 1 p+q=1 p+q=1, 请化简:
    ∑ i = k + ∞ λ i i ! e − λ i ! k ! ( i − k ) ! p k q i − k \sum_{i=k}^{+\infin}\frac{\lambda^i}{i!}e^{-\lambda}\frac{i!}{k!(i-k)!}p^kq^{i-k} i=k+i!λieλk!(ik)!i!pkqik
    思路:利用指数函数的泰勒公式 ∑ i = 0 + ∞ x i i ! = e x \sum_{i=0}^{+\infin}\frac{x^i}{i!}=e^x i=0+i!xi=ex化简级数项,注意指标变量变换前的和与变换后的和相等。

    ∑ i = k + ∞ λ i i ! e − λ i ! k ! ( i − k ) ! p k q i − k = ∑ i = k + ∞ λ i e − λ k ! ( i − k ) ! p k q i − k = ∑ i = 0 + ∞ λ i + k e − λ k ! i ! p k q i = e − λ = e − λ ( p + q ) ( λ p ) k k ! e − λ p ∑ i = 0 + ∞ ( λ q ) i i ! e − λ q = ( λ p ) k k ! e − λ p e λ q e − λ q = ( λ p ) k k ! e − λ p \begin{aligned} \sum_{i=k}^{+\infin}\frac{\lambda^i}{i!}e^{-\lambda}\frac{i!}{k!(i-k)!}p^kq^{i-k}& = \sum_{i=k}^{+\infin}\frac{\lambda^ie^{-\lambda}}{k!(i-k)!}p^kq^{i-k} \\ &=\sum_{i=0}^{+\infin}\frac{\lambda^{i+k}e^{-\lambda}}{k!i!}p^kq^i \\ & \overset{e^{-\lambda} = e^{-\lambda(p+q)}}{=} \frac{(\lambda p)^k}{k!}e^{-\lambda p}\sum_{i=0}^{+\infin}\frac{(\lambda q)^i}{i!}e^{-\lambda q} \\ & = \frac{(\lambda p)^k}{k!}e^{-\lambda p} e^{\lambda q} e^{-\lambda q} \\ & = \frac{(\lambda p)^k}{k!}e^{-\lambda p} \end{aligned} i=k+i!λieλk!(ik)!i!pkqik=i=k+k!(ik)!λieλpkqik=i=0+k!i!λi+keλpkqi=eλ=eλ(p+q)k!(λp)keλpi=0+i!(λq)ieλq=k!(λp)keλpeλqeλq=k!(λp)keλp

3. 定积分

3.1 分部积分法

  • 已知 a n = ∫ 0 1 x n 1 − x 2 d x a_n = \int_0^1x^n\sqrt{1-x^2}dx an=01xn1x2 dx,求证: a n = n − 1 n + 2 a n − 2 a_n = \frac{n-1}{n+2}a_{n-2} an=n+2n1an2
    证明:

∵ \because
a n = ∫ 0 1 x n 1 − x 2 d x a_n = \int_0^1x^n\sqrt{1-x^2}dx \\ an=01xn1x2 dx
∴ \therefore
a n − 2 = ∫ 0 1 x n − 2 1 − x 2 d x a_{n-2} = \int_0^1x^{n-2}\sqrt{1-x^2}dx \\ an2=01xn21x2 dx
∵ \because
a n = ∫ 0 1 x n 1 − x 2 d x = − 1 3 ∫ 0 1 x n − 1 ( − 3 x ) 1 − x 2 d x \begin{aligned} a_n & = \int_0^1x^n\sqrt{1-x^2}dx\\ & = -\frac{1}{3}\int_0^1x^{n-1}(-3x)\sqrt{1-x^2}dx \\ \end{aligned} an=01xn1x2 dx=3101xn1(3x)1x2 dx
令: u = x n − 1 , v = ( 1 − x 2 ) 3 2 u=x^{n-1},v=(1-x^2)^{\frac{3}{2}} u=xn1,v=(1x2)23,则:
u ′ = ( n − 1 ) x n − 2 , v ′ = 3 2 ( 1 − x 2 ) 1 2 ⋅ ( − 2 x ) = − 3 x ( 1 − x 2 ) 1 2 u'=(n-1)x^{n-2},v'=\frac{3}{2}(1-x^2)^{\frac{1}{2}}\cdot(-2x)=-3x(1-x^2)^{\frac{1}{2}} u=(n1)xn2,v=23(1x2)21(2x)=3x(1x2)21
故:
a n = − 1 3 ∫ 0 1 u v ′ d x = − 1 3 ∫ 0 1 u d v = − 1 3 ( u v ∣ 0 1 − ∫ 0 1 v d u ) = − 1 3 ( x n − 1 ( 1 − x 2 ) 3 2 ∣ 0 1 − ∫ 0 1 ( 1 − x 2 ) 3 2 ( n − 1 ) x n − 2 d x ) = 1 3 ∫ 0 1 ( 1 − x 2 ) ( 1 − x 2 ) 1 2 ( n − 1 ) x n − 2 d x = n − 1 3 [ ∫ 0 1 x n − 2 ( 1 − x 2 ) 1 2 d x − ∫ 0 1 x n ( 1 − x 2 ) 1 2 d x ] \begin{aligned} a_n & = -\frac{1}{3}\int_0^1uv'dx \\ & = -\frac{1}{3}\int_0^1udv \\ & = -\frac{1}{3}\left ( \left.uv\right|_0^1 - \int_0^1vdu\right) \\ & = \left. -\frac{1}{3} \left(x^{n-1}(1-x^2)^{\frac{3}{2}} \right|_0^1 - \int_0^1(1-x^2)^{\frac{3}{2}}(n-1)x^{n-2}dx \right ) \\ & = \frac{1}{3}\int_0^1(1-x^2)(1-x^2)^{\frac{1}{2}}(n-1)x^{n-2}dx \\ & = \frac{n-1}{3} \left [ \int_0^1x^{n-2}(1-x^2)^{\frac{1}{2}}dx - \int_0^1x^n(1-x^2)^{\frac{1}{2}}dx \right ] \end{aligned} an=3101uvdx=3101udv=31(uv0101vdu)=31(xn1(1x2)230101(1x2)23(n1)xn2dx)=3101(1x2)(1x2)21(n1)xn2dx=3n1[01xn2(1x2)21dx01xn(1x2)21dx]
即:
a n = n − 1 3 ( a n − 2 − a n ) a_n = \frac{n-1}{3}(a_{n-2} - a_n) an=3n1(an2an)
整理得:
a n = n − 1 n + 2 a n − 2 a_n = \frac{n-1}{n+2}a_{n-2} an=n+2n1an2

4. 二元函数最值问题

题目:求函数 f ( x , y ) = ( x + 1 ) 2 + ( y + 1 ) 2 f(x,y)=(x+1)^2+(y+1)^2 f(x,y)=(x+1)2+(y+1)2在条件 x 2 + y 2 + x y − 3 = 0 x^2+y^2+xy-3=0 x2+y2+xy3=0下的最值。
求解:设拉格朗日函数 F ( x , y ) = f ( x , y ) + λ ( x 2 + y 2 + x y − 3 ) F(x,y)=f(x,y)+\lambda(x^2+y^2+xy-3) F(x,y)=f(x,y)+λ(x2+y2+xy3),分别对变量 x , y , λ x,y,\lambda x,y,λ求偏导得:
{ ∂ F ∂ x = 2 ( x + 1 ) + λ ( 2 x + y ) ∂ F ∂ y = 2 ( y + 1 ) + λ ( 2 y + x ) ∂ F ∂ λ = x 2 + y 2 + x y − 3 (4.1) \left \{ \begin{aligned} \frac{\partial F}{\partial x} &= 2(x+1) + \lambda(2x+y) \\ \frac{\partial F}{\partial y} &= 2(y+1) + \lambda(2y+x) \\ \frac{\partial F}{\partial \lambda} &= x^2+y^2+xy-3 \\ \tag{4.1} \end{aligned} \right. xFyFλF=2(x+1)+λ(2x+y)=2(y+1)+λ(2y+x)=x2+y2+xy3(4.1)
令偏导为零可得如下方程组:
{ 2 ( x + 1 ) + λ ( 2 x + y ) = 0 2 ( y + 1 ) + λ ( 2 y + x ) = 0 x 2 + y 2 + x y − 3 = 0 (4.2) \left \{ \begin{aligned} &2(x+1) + \lambda(2x+y) = 0 \\ &2(y+1) + \lambda(2y+x) = 0 \\ &x^2+y^2+xy-3 = 0\\ \end{aligned} \right.\tag{4.2} 2(x+1)+λ(2x+y)=02(y+1)+λ(2y+x)=0x2+y2+xy3=0(4.2)
该方程组是一个三元二次方程组,一般这类方程组需要 3 × 2 = 6 3\times2=6 3×2=6个独立方程才能求解,但这个题目比较特殊(答题人设计好了 hhh),前两个方程都是一次,而第三个方程为二次,因而可按照消元降次的思路进行求解。具体地:
将前两个三元一次方程作差可得:
( λ + 2 ) ( x − y ) = 0 (4.3) (\lambda + 2)(x - y) = 0 \tag{4.3} (λ+2)(xy)=0(4.3)
那么式(4.3)的解将有三种情况,分别进行讨论:
A. x = y x=y x=y λ = − 2 \lambda = -2 λ=2,将其带入第一个方程可得 x = y = 1 / 2 x=y=1/2 x=y=1/2,显然该解不能满足第三个方程(这意味着该解不满足约束条件),故 x = y = 1 / 2 x=y=1/2 x=y=1/2不是方程组(4.2)的解;
B. x = y x = y x=y λ ≠ − 2 \lambda \ne -2 λ=2,将其带入第三个方程可得 x = y = 1 x=y=1 x=y=1 x = y = − 1 x=y=-1 x=y=1,将该解带入到第一个方程可得 λ = − 4 / 3 \lambda = - 4/3 λ=4/3 λ = 0 \lambda=0 λ=0,该解满足条件;
C. x ≠ y x \ne y x=y λ = − 2 \lambda=-2 λ=2,将其带入第一个方程得 x + y = 1 x+y=1 x+y=1,利用该式可对第三个方程降次,得 x = − 1 , y = 2 x=-1,y=2 x=1,y=2 x = 2 , y = − 1 x=2,y=-1 x=2,y=1,该解满足条件。
综上所述,方程组(4.2)的解为:
{ x = − 1 , y = − 1 , λ = 0 ⇒ f ( − 1 , − 1 ) = 0 x = 1 , y = 1 , λ = − 4 3 ⇒ f ( 1 , 1 ) = 0 x = − 1 , y = 2 , λ = − 2 ⇒ f ( − 1 , 2 ) = 9 x = 2 , y = − 1 , λ = − 2 ⇒ f ( 2 , − 1 ) = 9 (4.4) \left \{ \begin{aligned} &x=-1,y=-1,\lambda=0 \Rightarrow f(-1,-1) = 0 \\ &x=1,y=1,\lambda=-\frac{4}{3} \Rightarrow f(1,1) = 0 \\ &x=-1,y=2,\lambda=-2 \Rightarrow f(-1,2) = 9 \\ &x=2,y=-1,\lambda=-2 \Rightarrow f(2,-1) = 9 \\ \end{aligned} \right. \tag{4.4} x=1,y=1,λ=0f(1,1)=0x=1,y=1,λ=34f(1,1)=0x=1,y=2,λ=2f(1,2)=9x=2,y=1,λ=2f(2,1)=9(4.4)
故函数 f ( x , y ) f(x,y) f(x,y)的最大值为9,最小值为0。

5. ∞ − ∞ \infty-\infty 极限

对于此类型极限,可以先通过换元,将其化为 0 0 \frac{0}{0} 00型,再进行计算。

5.1 换元+泰勒求极限

题目: 求极限:
lim ⁡ x → ∞ ( 1 − x 6 3 + x 2 ) \lim_{x\to \infin}\left(\sqrt[3]{1-x^6}+x^2\right) xlim(31x6 +x2)
求解:
lim ⁡ x → ∞ ( 1 − x 6 3 + x 2 ) = t = 1 x lim ⁡ t → 0 ( 1 − ( 1 t ) 6 3 + ( 1 t ) 2 ) = lim ⁡ t → 0 1 − t 6 − 1 3 t 2 = ∗ lim ⁡ t → 0 t 4 = 0 (5.1) \begin{aligned} \lim_{x\to \infin}\left(\sqrt[3]{1-x^6}+x^2\right) &\overset{t=\frac{1}{x}} = \lim_{t\to0}\left( \sqrt[3]{1-\left( \frac{1}{t}\right)^6} +\left( \frac{1}{t}\right)^2\right) \\ & = \lim_{t \to 0}\frac{1-\sqrt[3]{t^6-1}}{t^2}\\ & \overset{*}= \lim_{t\to 0} t^4 =0 \tag{5.1} \end{aligned} xlim(31x6 +x2)=t=x1t0lim31(t1)6 +(t1)2=t0limt213t61 =t0limt4=0(5.1)
“*”处用到了根式泰勒展开公式:
1 − t 6 3 = 1 + ( − t 6 ) 3 = [ 1 + ( − t 6 ) ] 1 3 = 1 + 1 3 ( − t 6 ) + o ( − t 6 ) \sqrt[3]{1-t^6} = \sqrt[3]{1+(-t^6)}=\left[ 1+(-t^6)\right]^{\frac{1}{3}}=1+\frac{1}{3}(-t^6)+o(-t^6) 31t6 =31+(t6) =[1+(t6)]31=1+31(t6)+o(t6)

5.2 换元+洛必达求极限

题目: 求极限:
lim ⁡ x → − ∞ [ 4 x 2 + x l n ( 2 + 1 x ) + 2 x l n 2 ] \begin{aligned} \lim_{x \to -\infty}\left[ \sqrt{4x^2+x}ln\left( 2+\frac{1}{x} \right) + 2xln2\right] \end{aligned} xlim[4x2+x ln(2+x1)+2xln2]
求解:
lim ⁡ x → − ∞ [ 4 x 2 + x l n ( 2 + 1 x ) + 2 x l n 2 ] = t = 1 x lim ⁡ t → 0 − [ 4 + t t 2 l n ( 2 + t ) + 2 l n 2 t ] = ∗ lim ⁡ t → 0 − − 4 + t l n ( 2 + t ) + 2 l n 2 t = 洛 lim ⁡ t → 0 − − l n ( 2 + t ) 2 4 + t − 4 + t 2 + t = − 1 4 l n ( 2 + t ) − 1 \begin{aligned} & \lim_{x \to -\infty}\left[ \sqrt{4x^2+x}ln\left( 2+\frac{1}{x} \right) + 2xln2\right] \\ & \overset{t=\frac{1}{x}} = \lim_{t \to 0^{-}}\left[ \sqrt{\frac{4+t}{t^2}}ln\left( 2+ t\right) + \frac{2ln2}{t} \right] \\ & \overset{*} = \lim_{t \to 0^{-}}\frac{-\sqrt{4+t}ln\left (2+t \right)+2ln2}{t} \\ & \overset{洛}= \lim_{t \to 0^{-}} \frac{-ln(2+t)}{2\sqrt{4+t}}-\frac{\sqrt{4+t}}{2+t} \\ & = -\frac{1}{4}ln(2+t)-1 \end{aligned} xlim[4x2+x ln(2+x1)+2xln2]=t=x1t0lim[t24+t ln(2+t)+t2ln2]=t0limt4+t ln(2+t)+2ln2=t0lim24+t ln(2+t)2+t4+t =41ln(2+t)1
"*"处注意 t 2 = ( − t ) 2 = − t \sqrt{t^2} = \sqrt{(-t)^2}=-t t2 =(t)2 =t

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿呆591

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值