MATLAB联动本地部署的DeepSeek模型

MATLAB联动本地部署的 DeepSeek 大模型

1. 为什么要本地部署DeepSeek模型

  1. 保护个人/公司数据隐私

    • 部署本地大模型能有效避免敏感数据上传至云端,保障隐私安全。
  2. 无网络情况(如野外作业等)

    • 在无网络环境下依然可以使用强大的 AI 模型,特别适用于野外科研、偏远地区办公等场景。
  3. 研究学习

    • 开发者和研究人员可通过本地部署,深入学习和调试模型参数,方便进行实验和个性化定制。

2. 运行效果

测试环境:MacBook M3, 16GB RAM

运行效果1
运行效果2

3. 本地部署步骤

B站演示视频

3.1 下载 LM Studio (大模型部署软件)

LM Studio 是一款便捷的大模型部署工具,支持多平台,下载方式如下:

  1. 访问 LM Studio 官网
  2. 根据操作系统选择合适版本下载并安装。
  3. 安装过程非常简单,按提示操作即可。

LM Studio 安装界面

3.2 下载开源模型权重及部署到指定位置

下载 DeepSeek 开源模型权重,确保硬盘空间充足。模型权重文件大小因版本不同而有所差异:

  • 完整模型:约 2GB,适用于对模型精度要求较高的场景。
  • 量化版本:约 700MB,更适合硬件资源有限的设备。

模型权重下载

3.3 模型权重文件放置位置

将模型文件按照以下路径结构存放,确保 LM Studio 能正确识别:

/发布者文件夹/模型名称/模型权重文件(.gguf 格式)

示例路径:

/DeepSeek/ChatModel/deepseek-chatmodel.gguf

正确的文件夹结构

3.4 加载模型

  1. 打开 LM Studio,进入聊天界面。
  2. 点击 “选择模型”,找到已配置的 DeepSeek 模型。
  3. 点击加载。

加载模型

3.5 模型加载设置(默认即可)

加载模型时,会弹出配置界面,包括以下参数:

  • 上下文长度:默认最大,适合大多数使用场景。
  • 使用设备:可选择 CPU 或 GPU,推荐使用 GPU 提升性能。
  • CPU 线程数:默认即可,特殊需求可根据硬件配置调整。

模型加载设置

3.6 开启本地服务端

如果需要通过 API 调用本地模型,可开启服务端功能:

  1. 在 LM Studio 中找到 “开启服务端” 选项。
  2. 记录下服务端的地址和端口,供后续调用使用。

开启本地服务端

3.7 使用 MATLAB 调用本地模型

以下是使用 MATLAB 调用本地部署的 DeepSeek 模型的示例代码:

clc;
clear;
close all;

% 设置API URL
url = 'http://localhost:1234/v1/chat/completions';  % 本地模型服务地址

% 构建消息体,保持与API要求一致
messages = struct(...
    'role', {'system', 'user'}, ...
    'content', {'You are a helpful assistant.', 'matlab写一段求解二元一次方程根的程序'} ...
);

% 定义请求体
payload = struct(...
    'model', 'deepseek', ...  % 替换为你的本地模型名称
    'messages', {messages} ...
);

% JSON编码请求体
payloadJson = jsonencode(payload);

% 设置请求头,确保格式正确
options = weboptions(...
    'HeaderFields', {...
        'Authorization', ['Bearer ' 'sk-']; ...
        'Content-Type', 'application/json'; ...
    }, ...
    'MediaType', 'application/json', ...
    'Timeout', 30 ...  % 延长超时时间
);

% 发送POST请求
response = webwrite(url, payloadJson, options);

% 输出响应结果
disp(response);
responseText = response.choices.message.content;

4. 常见问题排查

4.1 模型无法识别?

  • 检查文件夹结构是否正确,确保三层路径完整。
  • 确认模型权重文件格式为 .gguf

4.2 加载模型卡顿?

  • 模型加载时 CPU 和内存占用较高是正常现象。
  • 尝试使用量化版本,或调整加载设置。

4.3 模型响应慢?

  • 硬件配置是否满足模型运行需求?
  • 尝试切换至 GPU 加速模式。

5. 附录资料

百度网盘链接提取码: xhjn

### 在 MATLAB 中调用 DeepSeek语言模型 API 的方法 要在 MATLAB 中集成或使用 DeepSeek语言模型,可以通过 RESTful API 接口来完成。以下是具体的技术实现方式: #### 1. 使用 HTTP 请求调用 DeepSeek API MATLAB 提供了 `webread` 和 `websave` 函数用于发送 HTTP 请求并接收响应数据。可以利用这些函数向 DeepSeek API 发送请求。 ```matlab % 设置 API 密钥和其他必要参数 apiKey = 'your_api_key_here'; % 替换为实际的 API Key url = 'https://api.deepseek.com/v1/generate'; % 假设这是 DeepSeek API 的 URL 地址 % 构建请求头部 headers = weboptions('HeaderFields', {'Authorization', ['Bearer ', apiKey]}); % 定义输入提示(Prompt) prompt = "Write a function to calculate the factorial of a number."; % 构造 POST 数据体 postData = struct('prompt', prompt, 'max_tokens', 100); % 发送 POST 请求至 DeepSeek API 并获取返回结果 response = webwrite(url, postData, headers); disp(response); % 显示生成的内容 ``` 上述代码片段展示了如何通过 MATLABDeepSeek API 发起请求,并解析返回的结果[^3]。 --- #### 2. 利用 MATLAB 的深度学习工具箱扩展功能 如果目标是将 DeepSeek 集成到 MATLAB 的深度学习工作流中,则可考虑以下两种方案之一: ##### (1)导出 DeepSeek 模型权重并与 MATLAB 工具箱兼容 DeepSeek 支持多种主流框架(如 PyTorch),因此可以从官方仓库下载预训练模型文件,并将其转换为 ONNX 格式或其他 MATLAB 可加载的形式。之后借助 **Deep Learning Toolbox** 加载模型进行推理操作。 ```matlab % 将外部模型导入 MATLAB import matlab.onnx.* net = importONNXNetwork('deepseek_model.onnx'); % 假定已有的 ONNX 文件名为 deepseek_model.onnx % 对新样本执行预测 inputData = rand(1, 768); % 输入张量形状需匹配模型需求 output = predict(net, inputData); disp(output); ``` 此部分涉及模型格式转换以及性能优化等内容,在实践中可能需要额外调整以适配特定任务。 ##### (2)结合 Python 脚本桥接 MATLABDeepSeek SDK 由于 DeepSeek 提供了基于 Python 的 SDK 库,可以直接编写一段 Python 程序作为中介层,再由 MATLAB 执行该脚本来间接访问服务端资源。 创建一个简单的 Python 脚本如下所示: ```python from deepseek import generate_text def call_deepseek(prompt): result = generate_text(prompt=prompt, max_length=50) return result['text'] if __name__ == "__main__": user_input = input("Enter your query:") output = call_deepseek(user_input) print(f"Generated Text:{output}") ``` 随后在 MATLAB 中运行这段脚本即可获得所需输出。 ```matlab system(['python path/to/your_script.py']); % 替代真实路径名 ``` 这种方法灵活性较高,尤其适合那些无法完全依赖内置接口解决的问题情境下应用。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿呆591

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值