POJ 1321 棋盘问题【深度优先搜索】

 

棋盘问题

Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 60983 Accepted: 29214

Description

在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。

Input

输入含有多组测试数据。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。

Output

对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。

Sample Input

2 1
#.
.#
4 4
...#
..#.
.#..
#...
-1 -1

Sample Output

2
1

Source

蔡错@pku

思路:深度优先搜索。如果当前步数等于棋子数目,则方法数加一,并且返回到上一步。每次搜索完成或者失败时都要把清除标记重置。

方法1:

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<stack>
using namespace std;
int N,K;
int vis[9];
char MAP[9][9];
int step;
int ways;
void dfs(int n)
{
    if(step==K)///棋子个数为K,方案数+1  
    {
        ways++;
       return;
    }
    if(n>=N)///搜出棋盘外
        return ;
    for(int j=0;j<N;j++)
    {
        if(vis[j]==0&&MAP[n][j]=='#')///该列没被访问,并且n行为‘#’。
        {
            vis[j]=1;///标记为访问过,步数+1;
            step++;
            dfs(n+1);///继续搜索下一行
            vis[j]=0;///清除标记
            step--;

        }
    }
    dfs(n+1);///该行已经满足棋子总数,所以不放棋子
}
int main()
{
    while(~scanf("%d %d",&N,&K))
    {
        memset(vis,0,sizeof(vis));
        memset(MAP,0,sizeof(MAP));
        if(N==-1&&K==-1)
            break;
        getchar();///注意加入,读取回车产生的换行
        for(int i=0;i<N;i++)
            scanf("%s",MAP[i]);
        step=0;
        ways=0;
        dfs(0);
        printf("%d\n",ways);
    }
    return 0;

}

方法2:

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<iostream>
#include<stack>
#include<algorithm>
using namespace std;
const int maxn=10;
char e[maxn][maxn];
int vis[maxn];
int n,k;
int ways=0;
int dfs(int x,int num)
{
    if(num>=k)
    {
        ways++;
        return 0;
    }
    for(int i=x; i<n; i++)
    {
        for(int j=0; j<n; j++)
        {
            if(vis[j]==0&&e[i][j]=='#')
            {

                vis[j]=1;
                dfs(i+1,num+1);
                vis[j]=0;
            }
        }
    }

    return 0;
}
int main()
{
    while(~scanf("%d%d",&n,&k))
    {
        if(n==-1&&k==-1)
            break;
        memset(vis,0,sizeof(vis));
        for(int i=0; i<n; i++)
            scanf("%s",e[i]);
        ways=0;
        dfs(0,0);
        printf("%d\n",ways);
    }
    return 0;
}

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值