棋盘问题
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 60983 | Accepted: 29214 |
Description
在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
Input
输入含有多组测试数据。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
Output
对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。
Sample Input
2 1
#.
.#
4 4
...#
..#.
.#..
#...
-1 -1
Sample Output
2
1
Source
思路:深度优先搜索。如果当前步数等于棋子数目,则方法数加一,并且返回到上一步。每次搜索完成或者失败时都要把清除标记重置。
方法1:
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<stack>
using namespace std;
int N,K;
int vis[9];
char MAP[9][9];
int step;
int ways;
void dfs(int n)
{
if(step==K)///棋子个数为K,方案数+1
{
ways++;
return;
}
if(n>=N)///搜出棋盘外
return ;
for(int j=0;j<N;j++)
{
if(vis[j]==0&&MAP[n][j]=='#')///该列没被访问,并且n行为‘#’。
{
vis[j]=1;///标记为访问过,步数+1;
step++;
dfs(n+1);///继续搜索下一行
vis[j]=0;///清除标记
step--;
}
}
dfs(n+1);///该行已经满足棋子总数,所以不放棋子
}
int main()
{
while(~scanf("%d %d",&N,&K))
{
memset(vis,0,sizeof(vis));
memset(MAP,0,sizeof(MAP));
if(N==-1&&K==-1)
break;
getchar();///注意加入,读取回车产生的换行
for(int i=0;i<N;i++)
scanf("%s",MAP[i]);
step=0;
ways=0;
dfs(0);
printf("%d\n",ways);
}
return 0;
}
方法2:
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<iostream>
#include<stack>
#include<algorithm>
using namespace std;
const int maxn=10;
char e[maxn][maxn];
int vis[maxn];
int n,k;
int ways=0;
int dfs(int x,int num)
{
if(num>=k)
{
ways++;
return 0;
}
for(int i=x; i<n; i++)
{
for(int j=0; j<n; j++)
{
if(vis[j]==0&&e[i][j]=='#')
{
vis[j]=1;
dfs(i+1,num+1);
vis[j]=0;
}
}
}
return 0;
}
int main()
{
while(~scanf("%d%d",&n,&k))
{
if(n==-1&&k==-1)
break;
memset(vis,0,sizeof(vis));
for(int i=0; i<n; i++)
scanf("%s",e[i]);
ways=0;
dfs(0,0);
printf("%d\n",ways);
}
return 0;
}