rknn_server启动方法

rknn_server: 是一个运行在板子上的后台代理服务,用于接收PC通过USB传输过来的协议,然后执行板端runtime对应的接口,并返回结果给PC。

当rknn_server没有启动,则在上位机和瑞芯微开发板的连扳调试,容易出现如下错误:

E RKNNAPI: rknn_init,  server connect fail!  ret = -9(ERROR_PIPE)!
E init_runtime: The rknn_server on the concected device is abnormal, please start the rknn_server on the device according to:
             https://github.com/rockchip-linux/rknpu2/blob/master/rknn_server_proxy.md

在这里插入图片描述
原因:RKNN Toolkit2的连板功能一般需要更新板端的 rknn_server 和 librknnrt.so/librknnmrt.so,并且手动启动 rknn_server 才能正常工作。

  • librknnrt.so: 是一个板端的runtime库。
  • librknnmrt.so: 是专用于1103/1106平台的runtime库。

下面以linux平台为例
rknn_server存放目录

Linux
└── rknn_server
    ├── aarch64
    │   └── usr
    │       └── bin
    │           ├── restart_rknn.sh
    │           ├── rknn_server
    │           └── start_rknn.sh
    └── armhf
        └── usr
            └── bin
                ├── restart_rknn.sh
                ├── rknn_server
                └── start_rknn.sh
  • BOARD_ARCH在64位Linux系统中,对应aarch64目录,在32位系统,对应armhf目录
  1. adb push Linux/rknn_server/${BOARD_ARCH}/usr/bin/下的所有文件到/usr/bin目录
  2. adb push Linux/librknn_api/${BOARD_ARCH}/librknnrt.so到/usr/lib目录
adb push Linux/rknn_server/aarch64/usr/bin/. /usr/bin
adb push Linux/librknn_api/aarch64/librknnrt.so /usr/lib
  1. 进入板子的串口终端,执行:
chmod +x /usr/bin/rknn_server
chmod +x /usr/bin/start_rknn.sh
chmod +x /usr/bin/restart_rknn.sh
restart_rknn.sh

备注:chmod +x:赋予用户文件的执行权限,使用方法:chmod +x 文件名

串口查看rknn_server详细日志-Linux平台

  1. 进入串口终端,设置日志等级
export RKNN_SERVER_LOGLEVEL=5
  1. 重启rknn_server进程(若固件没有自启动rknn_server)
restart_rknn.sh
  1. 再次使用python接口连板推理

具体参考链接:https://github.com/rockchip-linux/rknpu2/blob/master/rknn_server_proxy.md

rknn_toolkit2是Rockchip公司推出的一款人工智能开发工具集。它是基于Rockchip NPU(神经网络处理单元)的深度学习推理工具集,可用于将训练好的深度学习模型部署到Rockchip处理器上进行推理任务。rknn_toolkit2为开发者提供了一套完整的工具和接口,使他们能够轻松地将深度学习模型集成到他们的应用中。 rknn_toolkit2具有以下主要特点和功能: 1. 高性能推理:rknn_toolkit2通过充分利用Rockchip NPU的计算能力,可以实现高效的深度学习推理。它能够快速处理大规模的数据集,并实时响应用户的请求。 2. 复杂模型支持:rknn_toolkit2支持训练好的多种复杂深度学习模型,包括CNN、RNN、LSTM等。它能够自动优化模型结构,并进行模型压缩和量化,以提高性能和减少模型大小。 3. 简化部署流程:rknn_toolkit2提供了简单易用的API接口和命令行工具,使开发者能够方便地将模型集成到自己的应用程序中。它还支持多种常见的开发环境和框架,如TensorFlow、Caffe和PyTorch。 4. 跨平台支持:rknn_toolkit2不仅适用于Rockchip处理器,还可以在其他平台上进行移植和使用。它支持Linux和Android系统,并具有良好的兼容性和扩展性。 总之,rknn_toolkit2是一个功能强大且易于使用的人工智能开发工具,它能够帮助开发者充分发挥Rockchip处理器的性能优势,快速实现深度学习模型的部署和推理任务,推动人工智能在各个领域的应用与发展。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值