平衡二叉树的实现(第九章 P233 算法9.9-9.12)

平衡二叉树

 

前言

在计算机科学中,AVL树是最早被发明的自平衡二叉查找树。在AVL树中,任一节点对应的两棵子树的最大高度差为1,因此它也被称为高度平衡树。查找、插入和删除在平均和最坏情况下的时间复杂度都是O(logn)。增加和删除元素的操作则可能需要借由一次或多次树旋转,以实现树的重新平衡。

 

为什么要有平衡二叉树

 

二叉搜索树一定程度上可以提高搜索效率,但是当原序列有序时,例如序列 A = {1,2,3,4,5,6},构造二叉搜索树如图 所示。依据此序列构造的二叉搜索树为右斜树,同时二叉树退化成单链表,搜索效率降低为 O(n)。

二叉搜索树的查找效率取决于树的高度,因此保持树的高度最小,即可保证树的查找效率。所以当节点数目一定,保持树的左右两端保持平衡,树的查找效率最高。

这种左右子树的高度相差不超过 1 的树为平衡二叉树。

 

 

定义

 

平衡二叉查找树:简称平衡二叉树。根据科学家的英文名也称为 AVL 树。它具有如下几个性质:

  1. 可以是空树。

  2. 假如不是空树,任何一个结点的左子树与右子树都是平衡二叉树,并且高度之差的绝对值不超过 1。

如:下图不是平衡二叉树,因为结点 60 的左子树不是平衡二叉树。

如:下图也不是平衡二叉树,因为虽然任何一个结点的左子树与右子树都是平衡二叉树,但高度之差已经超过 1 。

 

 

平衡因子

定义:某节点的左子树与右子树的高度(深度)差即为该节点的平衡因子(BF,Balance Factor),平衡二叉树中不存在平衡因子大于 1 的节点。在一棵平衡二叉树中,节点的平衡因子只能取 0 、1 或者 -1 ,分别对应着左右子树等高,左子树比较高,右子树比较高。

 

               

 

 

存储结构

 

平衡二叉树类型的存储结构:

 

 

 

 

AVL树插入时的失衡与调整

 

最小失衡子树:在新插入的结点向上查找,以第一个平衡因子的绝对值超过 1 的结点为根的子树称为最小不平衡子树。也就是说,一棵失衡的树,是有可能有多棵子树同时失衡的。而这个时候,我们只要调整最小的不平衡子树,就能够将不平衡的树调整为平衡的树。

平衡二叉树的失衡调整主要是通过旋转最小失衡子树来实现的。根据旋转的方向有两种处理方式,左旋 与 右旋 。

旋转的目的就是减少高度,通过降低整棵树的高度来平衡。哪边的树高,就把那边的树向上旋转。

 

左旋

对节点进行左旋操作,流程如下:

(1)节点的右孩子替代此节点位置
(2)右孩子的左子树变为该节点的右子树
(3)节点本身变为右孩子的左子树

调用 L_Rotate() 图示:
 
 

 

右旋

右旋操作与左旋类似,操作流程为:

(1)节点的左孩子代表此节点
(2)节点的左孩子的右子树变为节点的左子树
(3)将此节点作为左孩子节点的右子树。

调用 R_Rotate() 图示:
 

 

 

 

AVL树的四种插入节点方式

 

假设一颗 AVL 树的某个节点为 A,有四种操作会使 A 的左右子树高度差大于 1,从而破坏了原有 AVL 树的平衡性。平衡二叉树插入节点的情况分为以下四种:

 

 

左旋转

 

所谓左旋就是向左旋转一次,下图所示为最简洁的左旋(插入3导致值为1的节点不平衡):

然而更多时候根节点并不是只有一个子树,下图为复杂的LL(左旋,插入13导致值为4的节点不平衡):

红色节点为插入后不平衡的节点,黄色部分为需要改变父节点的分支,左旋后,原红色节点的右孩子节点变成了根节点,红色节点变成了它的左孩子,而它原本的左孩子(黄色部分)不能丢,而此时红色节点的右孩子是空的,于是就把黄色部分放到了红色节点的右孩子的位置上。调整后该二叉树还是一棵二叉排序(搜索)树,因为黄色部分的值大于原来的根节点的值,而小于后来的根节点的值,调整后,黄色部分还是位于原来的根节点(红色节点)和后来的根节点之间。

 

 

右旋转

 

所谓RR(右旋)就是向右旋转一次,下图所示为最简洁的右旋(插入1导致值为3的节点不平衡):

然而更多时候根节点并不是只有一个子树,下图为复杂的RR(右旋,插入1导致值为9的节点不平衡):

红色节点为插入后不平衡的节点,黄色部分为需要改变父节点的分支,右旋后,原红色节点的左孩子节点变成了根节点,红色节点变成了它的右孩子,而它原本的右孩子(黄色部分)不能丢,而此时红色节点的左孩子是空的,于是就把黄色部分放到了红色节点的左孩子的位置上。调整后该二叉树还是一棵二叉排序(搜索)树,因为黄色部分的值小于原来的根节点的值,而大于后来的根节点的值,调整后,黄色部分还是位于后来的根节点和原来的根节点(红色节点)之间。

 

 

先左旋后右旋

 
LR 型平衡旋转图示:
 
 
 
 

所谓LR(先左旋再右旋)就是先将左子树左旋,再整体右旋,下图为最简洁的LR旋转(插入2导致值为3的节点不平衡):

然而更多时候根节点并不是只有一个子树,下图为复杂的LR旋转(插入8导致值为9的节点不平衡):

先将红色节点的左子树左旋,红色节点的左子树的根原本是值为4的节点,左旋后变为值为6的节点,原来的根节点变成了左旋后根节点的左孩子,左旋后根节点原本的左孩子(蓝色节点)变成了原来的根节点的右孩子;再整体右旋,原来的根节点(红色节点)变成了右旋后的根节点的右孩子,右旋后的根节点原本的右孩子(黄色节点)变成了原来的根节点(红色节点)的左孩子。旋转完成后,仍然是一棵二叉排序(搜索)树。

 

 

先右旋后左旋

 

RL 型平衡旋转图示:
 
 

所谓RL(先右旋再左旋)就是先将右子树右旋,再整体左旋,下图为最简洁的RL旋转(插入2导致值为1的节点不平衡):

然而更多时候根节点并不是只有一个子树,下图为复杂的RL旋转(插入8导致值为4的节点不平衡):

先将红色节点的右子树右旋,红色节点的右子树的根原本是值为9的节点,右旋后变为值为6的节点,原来的根节点变成了右旋后根节点的右孩子,右旋后根节点原本的右孩子(蓝色节点)变成了原来的根节点的左孩子;再整体左旋,原来的根节点(红色节点)变成了左旋后的根节点的左孩子,左旋后的根节点原本的左孩子(黄色节点)变成了原来的根节点(红色节点)的右孩子。旋转完成后,仍然是一棵二叉排序(搜索)树。

 

 

 
 
 

代码

 
 
typedef int Status; /* Status是函数的类型,其值是函数结果状态代码,如OK等 */
typedef int Boolean; /* Boolean是布尔类型,其值是TRUE或FALSE */

#include<malloc.h> /* malloc()等 */
#include<stdio.h> /* EOF(=^Z或F6),NULL */
#include<process.h> /* exit() */

/* 函数结果状态代码 */
#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define INFEASIBLE -1
#define OVERFLOW -2 

/* 对两个数值型关键字的比较约定为如下的宏定义 */
#define EQ(a,b) ((a)==(b))
#define LT(a,b) ((a)<(b))
#define LQ(a,b) ((a)<=(b))


#define N 5 /* 数据元素个数 */
typedef int KeyType; /* 设关键字域为字符型 */
typedef struct
{
	KeyType key;
	int order;
}ElemType; /* 数据元素类型 */


/* --------------------------------     平衡二叉树的类型    ----------------------------------*/

typedef struct BSTNode
{
	ElemType data;
	int bf; /* 结点的平衡因子 */
	struct BSTNode *lchild, *rchild; /* 左、右孩子指针 */
}BSTNode, *BSTree;

/* ---------------------------------------------------------------------------------------------*/


/* --------------------------------   动态查找表(平衡二叉树)的基本操作   -------------------------------*/


Status InitDSTable(BSTree *DT) 
{ /* 操作结果: 构造一个空的动态查找表DT */
	*DT = NULL;
	return OK;
}

void DestroyDSTable(BSTree *DT) 
{ /* 初始条件: 动态查找表DT存在。操作结果: 销毁动态查找表DT */
	if (*DT) /* 非空树 */
	{
		if ((*DT)->lchild) /* 有左孩子 */
			DestroyDSTable(&(*DT)->lchild); /* 销毁左孩子子树 */
		if ((*DT)->rchild) /* 有右孩子 */
			DestroyDSTable(&(*DT)->rchild); /* 销毁右孩子子树 */
		free(*DT); /* 释放根结点 */
		*DT = NULL; /* 空指针赋0 */
	}
}

BSTree SearchBST(BSTree T, KeyType key)
{ /* 在根指针T所指二叉排序树中递归地查找某关键字等于key的数据元素, */
  /* 若查找成功,则返回指向该数据元素结点的指针,否则返回空指针。算法9.5(a) */
	if ((!T) || EQ(key, T->data.key))
		return T; /* 查找结束 */
	else if LT(key, T->data.key) /* 在左子树中继续查找 */
		return SearchBST(T->lchild, key);
	else
		return SearchBST(T->rchild, key); /* 在右子树中继续查找 */
}

void R_Rotate(BSTree *p)
{ /* 对以*p为根的二叉排序树作右旋处理,处理之后p指向新的树根结点,即旋转 */
  /* 处理之前的左子树的根结点。算法9.9 */
	BSTree lc;
	lc = (*p)->lchild; /* lc指向p的左子树根结点 */
	(*p)->lchild = lc->rchild; /* lc的右子树挂接为p的左子树 */
	lc->rchild = *p;
	*p = lc; /* p指向新的根结点 */
}

void L_Rotate(BSTree *p)
{ /* 对以*p为根的二叉排序树作左旋处理,处理之后p指向新的树根结点,即旋转 */
  /* 处理之前的右子树的根结点。算法9.10 */
	BSTree rc;
	rc = (*p)->rchild; /* rc指向p的右子树根结点 */
	(*p)->rchild = rc->lchild; /* rc的左子树挂接为p的右子树 */
	rc->lchild = *p;
	*p = rc; /* p指向新的根结点 */
}

#define LH +1 /* 左高 */
#define EH 0  /* 等高 */
#define RH -1 /* 右高 */

void LeftBalance(BSTree *T)
{ /* 对以指针T所指结点为根的二叉树作左平衡旋转处理,本算法结束时, */
  /* 指针T指向新的根结点。算法9.12 */
	BSTree lc, rd;
	lc = (*T)->lchild; /* lc指向*T的左子树根结点 */
	switch (lc->bf)
	{ /* 检查*T的左子树的平衡度,并作相应平衡处理 */
	case LH: /* 新结点插入在*T的左孩子的左子树上,要作单右旋处理 */
		(*T)->bf = lc->bf = EH;
		R_Rotate(T);
		break;
	case RH: /* 新结点插入在*T的左孩子的右子树上,要作双旋处理 */
		rd = lc->rchild; /* rd指向*T的左孩子的右子树根 */
		switch (rd->bf)
		{ /* 修改*T及其左孩子的平衡因子 */
		case LH: (*T)->bf = RH;
			lc->bf = EH;
			break;
		case EH: (*T)->bf = lc->bf = EH;
			break;
		case RH: (*T)->bf = EH;
			lc->bf = LH;
		}
		rd->bf = EH;
		L_Rotate(&(*T)->lchild); /* 对*T的左子树作左旋平衡处理 */
		R_Rotate(T); /* 对*T作右旋平衡处理 */
	}
}

void RightBalance(BSTree *T)
{ /* 对以指针T所指结点为根的二叉树作右平衡旋转处理,本算法结束时, */
  /* 指针T指向新的根结点 */
	BSTree rc, rd;
	rc = (*T)->rchild; /* rc指向*T的右子树根结点 */
	switch (rc->bf)
	{ /* 检查*T的右子树的平衡度,并作相应平衡处理 */
	case RH: /* 新结点插入在*T的右孩子的右子树上,要作单左旋处理 */
		(*T)->bf = rc->bf = EH;
		L_Rotate(T);
		break;
	case LH: /* 新结点插入在*T的右孩子的左子树上,要作双旋处理 */
		rd = rc->lchild; /* rd指向*T的右孩子的左子树根 */
		switch (rd->bf)
		{ /* 修改*T及其右孩子的平衡因子 */
		case RH: (*T)->bf = LH;
			rc->bf = EH;
			break;
		case EH: (*T)->bf = rc->bf = EH;
			break;
		case LH: (*T)->bf = EH;
			rc->bf = RH;
		}
		rd->bf = EH;
		R_Rotate(&(*T)->rchild); /* 对*T的右子树作右旋平衡处理 */
		L_Rotate(T); /* 对*T作左旋平衡处理 */
	}
}

Status InsertAVL(BSTree *T, ElemType e, Status *taller)
{ /* 若在平衡的二叉排序树T中不存在和e有相同关键字的结点,则插入一个 */
  /* 数据元素为e的新结点,并返回1,否则返回0。若因插入而使二叉排序树 */
  /* 失去平衡,则作平衡旋转处理,布尔变量taller反映T长高与否。算法9.11 */
	if (!*T)
	{ /* 插入新结点,树“长高”,置taller为TRUE */
		*T = (BSTree)malloc(sizeof(BSTNode));
		(*T)->data = e;
		(*T)->lchild = (*T)->rchild = NULL;
		(*T)->bf = EH;
		*taller = TRUE;
	}
	else
	{
		if EQ(e.key, (*T)->data.key)
		{ /* 树中已存在和e有相同关键字的结点则不再插入 */
			*taller = FALSE;
			return FALSE;
		}
		if LT(e.key, (*T)->data.key)
		{ /* 应继续在*T的左子树中进行搜索 */
			if (!InsertAVL(&(*T)->lchild, e, taller)) /* 未插入 */
				return FALSE;
			if (*taller) /*  已插入到*T的左子树中且左子树“长高” */
				switch ((*T)->bf) /* 检查*T的平衡度 */
				{
				case LH: /* 原本左子树比右子树高,需要作左平衡处理 */
					LeftBalance(T);
					*taller = FALSE;
					break;
				case EH: /* 原本左、右子树等高,现因左子树增高而使树增高 */
					(*T)->bf = LH;
					*taller = TRUE;
					break;
				case RH: (*T)->bf = EH; /* 原本右子树比左子树高,现左、右子树等高 */
					*taller = FALSE;
				}
		}
		else
		{ /* 应继续在*T的右子树中进行搜索 */
			if (!InsertAVL(&(*T)->rchild, e, taller)) /* 未插入 */
				return FALSE;
			if (*taller) /* 已插入到T的右子树且右子树“长高” */
				switch ((*T)->bf) /* 检查T的平衡度 */
				{
				case LH: (*T)->bf = EH; /* 原本左子树比右子树高,现左、右子树等高 */
					*taller = FALSE;
					break;
				case EH: /* 原本左、右子树等高,现因右子树增高而使树增高 */
					(*T)->bf = RH;
					*taller = TRUE;
					break;
				case RH: /* 原本右子树比左子树高,需要作右平衡处理 */
					RightBalance(T);
					*taller = FALSE;
				}
		}
	}
	return TRUE;
}

void TraverseDSTable(BSTree DT, void(*Visit)(ElemType))
{ /* 初始条件: 动态查找表DT存在,Visit是对结点操作的应用函数 */
  /* 操作结果: 按关键字的顺序对DT的每个结点调用函数Visit()一次且至多一次 */
	if (DT)
	{
		TraverseDSTable(DT->lchild, Visit); /* 先中序遍历左子树 */
		Visit(DT->data); /* 再访问根结点 */
		TraverseDSTable(DT->rchild, Visit); /* 最后中序遍历右子树 */
	}
}


/* --------------------------------------------------------------------------------------------------*/



void print(ElemType c)
{
	printf("(%d,%d)", c.key, c.order);
}

void main()
{
	BSTree dt, p;
	Status k;
	int i;
	KeyType j;
	ElemType r[N] = { {13,1},{24,2},{37,3},{90,4},{53,5} }; /* (以教科书图9.12为例) */
	InitDSTable(&dt); /* 初始化空树 */
	for (i = 0; i < N; i++)
		InsertAVL(&dt, r[i], &k); /* 建平衡二叉树 */
	TraverseDSTable(dt, print); /* 按关键字顺序遍历二叉树 */
	printf("\n请输入待查找的关键字: ");
	scanf("%d", &j);
	p = SearchBST(dt, j); /* 查找给定关键字的记录 */
	if (p)
		print(p->data);
	else
		printf("表中不存在此值");
	printf("\n");
	DestroyDSTable(&dt);
}

运行结果:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值