IrisMarkNet:用于图像版权保护的虹膜特征水印嵌入和提取网络
论文地址:https://rdcu.be/cTCDU
1. Abstract
基于数字时代对版权保护的迫切需要,必须考虑虹膜认证技术的准确性。保证高精度身份验证准确性的前提下,去提高不可感知性和鲁棒性面临着巨大的挑战,特别是较长的虹膜特征会直接降低水印算法的不可感知性。本文首次提出了一种DNN-based的新型数字水印网络IrisMarkNet,它将版权所有者的二进制虹膜特征嵌入到载体图像中来实现图像的版权保护。该算法利用基于多尺度特征融合策略的金字塔特征融合模块PFF,获得了更好的不可感知性和well-enhanced的鲁棒性,优于其他采用单尺度特征融合的水印算法。此外,对于不同的mini-batch,随机选择噪声层中的noise进行对抗性训练,以提高该模型的鲁棒性。此外,我们建议利Convolutional Block Attention Module (CBAM) 来帮助在解码阶段更好地学习虹膜特征,并提出一种新的authenticator模块来实现图像版权所有者的认证。大量的实验和比较结果表明,该方案与最先进的水印算法相比,具有优越的性能。在JPEG、Crop、GF、SP、MF等实验条件下,IrisMarkNet在数字图像认证中实现了良好的鲁棒性和不可感知性,以及良好的身份验证准确率。
2.Method
2.1 Pipeline
所提出的网络架构的Pipeline如图1所示。为了将具有各种优良特性的虹膜特征应用于版权保护,我们通过Iris Feature Extractor [21,22]从采集到的虹膜图像中获得量化后的二进制虹膜特征。随后,得到的二进制虹膜特征和需要保护的载体图像作为IrisMarkNet的输入。金字塔特征融合模块PFF将二进制虹膜特征嵌入到数字图像中。在模拟noise layer之后,由decoder模块提取解码向量,即解码的虹膜特征。为了保证版权保护的准确性和效率,我们提出了一种新的authenticator模块,它将解码的二进制特征向量与新采集的需要进行身份验证的二进制虹膜特征向量进行匹配,实现图像版权身份的验证。最后,我们确认了数字图像版权所有者的身份,并实现了图像版权保护。
2.2 IrisMarkNet
为了训练一个实现数字图像版权保护的虹膜特征水印网络IrisMarkNet,我们将从每一个模块的设计、参数等细节进行讲解。如图2所示,IrisMarkNet网络架构包括四个主要模块:
1)参数为的PFF模块,把形状为的数字图像和长度为L的二值虹膜特征作为输入,生成一个编码图像。
2)噪声层由一个联合差分噪声层组成。端到端的编码器-解码器架构随机选择噪声进行联合训练,以实现不同噪声下的鲁棒性。
3)参数为的解码器模块从噪声图像中提取出长度为L的虹膜特征。
4) 参数为的对抗判别器,以编码图像和数字图像为输入,它预测给定的图片是编码图像的可能性。
当然,设计的PFF模块和decoder模块需要进行联合的训练来提升不可感知性与鲁棒性,同时增加差分噪声层进行模拟现实生活中常见的噪声(每一次的mini-batch会从noise layer中随机选择噪声进行训练),对抗鉴别器则是与PFF模块进行对抗的训练,可以提高编码图像(嵌入虹膜特征水印的数字图像)的生成质量,即水印算法的不可感知性。、
Loss:通过训练三个loss来优化IrisMarkNet,包括:image loss、message loss以及A-D loss。关于loss的计算公式在论文中(论文地址:https://rdcu.be/cTCDU)有着详细的说明以及细节,包括公式的参数。