本博客来自CSDN:http://blog.csdn.net/niuwei22007/article/details/49406635
本篇介绍的内容主要是给输入数据加入高斯噪声的。高斯噪声是指噪声数据服从高斯分布。一般图像处理都是用高斯噪声过滤器进行过滤,而此处加入噪声是为了防止过拟合现象。
一、GaussianNoise
keras.layers.noise.GaussianNoise(sigma)
将以0为中心,标准差是sigm
本文介绍了如何在Keras中使用GaussianNoise和GaussianDropout层来防止深度学习模型的过拟合。这两种方法通过在训练过程中向输入数据添加高斯噪声或应用高斯dropout,有助于提高模型的泛化能力。
本博客来自CSDN:http://blog.csdn.net/niuwei22007/article/details/49406635
本篇介绍的内容主要是给输入数据加入高斯噪声的。高斯噪声是指噪声数据服从高斯分布。一般图像处理都是用高斯噪声过滤器进行过滤,而此处加入噪声是为了防止过拟合现象。
keras.layers.noise.GaussianNoise(sigma)
将以0为中心,标准差是sigm
550

被折叠的 条评论
为什么被折叠?