pytorch损失函数loss

该博客介绍了深度学习中常用的损失函数,如L1Loss和MSELoss,并通过实例展示了它们在实际计算中的应用。此外,还探讨了CrossEntropyLoss在分类问题中的使用,以及如何利用PyTorch实现模型训练,包括反向传播和损失计算。最后,提到了使用TensorBoard进行模型可视化的方法。
摘要由CSDN通过智能技术生成

loss fuction:
(1)计算实际输出和目标之间的差距
(2)为我们更新输出提供一定的依据(反向传播)

#nn.loss
inputs = torch.tensor([1,2,3], dtype = torch.float32)
targets = torch.tensor([1,2,5], dtype = torch.float32)

inputs = torch.reshape(inputs, (1,1,1,3))
targets = torch.reshape(targets,(1,1,1,3)))
loss = nn.L1Loss()
result = loss(inputs, targets)

print(result)


# MSELoss
lose_mse = nn.MSELoss()
result_mse = loss_mse(inputs,targets)
print(result_mse)

在这里插入图片描述
在这里插入图片描述

#CrossEntropyLoss
x = torch.tensor([0.10.20.3])
y = torch.tensor([1])
x = torch.reshape(x, (1,3))
loss_cross = nn.CrossEntropyLoss()
ressult_cross = loss_cross(x,y)

dataset = torchvision.datasets.CIFAR10("./dataset", train = False, transform = torchvision.transforms.ToTensor(), download=True)
dataloder= DataLoader(dataset, batch_size=1)

class Model_test(nn.Module):
	def __init__(self):
		super(Model_test, self).__init__()
		self.model1 = Sequential(
		Conv2d(3, 32,5,padding=2),
		MaxPool2d(2),
		Conv2d(32, 32,5,padding=2),
		MaxPool2d(2),
		Flatten(),
		Linear(1024, 64),
		Linear(64, 10))
		
	def forward(self, x):
		x = self.model1(x)
		return x
loss = nn.CrossEntropyLoss()
model_test = Model_test()
for data in dataloader:
	imgs, targets = data
	outputs = model_test(imgs)
	result_loss = loss(outputs, targets)
	print(result_loss)
	result_loss.backward() #反向传播
	print("ok")
	


writer = SummaryWriter("logs_Sequential")	
writer.add_graph(model_test, input)
writer.close()

#terminal :tensorboard --logdir=logs_Sequential





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小六的画布

我的热爱,与你的打赏很配喔!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值