数学场论(偏导数、方向导数、梯度/标量场、矢量场、算子/环流量与旋度、通量与散度)

需要掌握的知识点小结:

1.矢量点积与矢量叉积

2.对标量操作(没有坐标单位矢量x、y、z)

——求某个标量函数的梯度或方向导数
梯度是偏导数组成的向量,带入坐标可求某点梯度
方向导数是梯度点积那个方向的单位向量(方向余弦)

3.对矢量操作(有分量,分量含有单位矢量x、y、z)

——对某个矢量函数,散度、散度定理、通量/旋度、旋度定理、环流量
散度是分量的偏导数的和
旋度是分量的偏导数的差组成的向量(行列式)

对矢量在矢量面上和矢量线上积分
高斯散度定理:
封闭曲面对坐标的曲面积分等于散度对曲面围成立体的三重积分

对矢量在矢量线上积分
斯托克斯公式:
封闭曲线对坐标曲线积分等于旋度对空间曲线围成面的二重积分

一、 偏导数(标)、方向导数(标)、梯度(矢)

1、偏导数:标量

(先用平面截取得到曲线,再求曲线导数)描述多元函数沿坐标轴的变化率
偏导数

2、方向导数:标量

求方向导数

方向导数函数=梯度函数(由fx、fy、fz三个偏导数)点积方向余弦(即单位方向向量)
方向导数函数带入具体的坐标得到该点方向导数

(用任意方向的平面截取)
一元函数求导数是描述在线上的点在坐标轴方向的变化率
二元函数求偏导数是描述面上的点在坐标轴方向的变化率
二元函数求方向导数描述多元函数上的点沿着任意一个指定方向的变化率

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3、梯度:矢量

求梯度

函数对三个变量求偏导得到梯度向量函数
带入某个点的坐标得到该点的梯度向量(具体数值)

求方向导数最大值

梯度是一个矢量指代一个方向,沿着这个方向多元函数变化率最快即方向导数最大
即沿着梯度的方向,方向导数取最大值且最大值为梯度的模

梯度与面的法向量的关系

知乎链接
等值面变化最快
二维曲线一元函数 y = x 2 y=x^2 y=x2,二元方程 y − x 2 = 0 y-x^2=0 yx2=0
三维曲面二元函数 f = y − x 2 f=y-x^2 f=yx2
三维曲面求梯度 δ ( f ) δ ( x ) i + δ ( f ) δ ( y ) j \frac{\delta(f)}{\delta(x)}i+\frac{\delta(f)}{\delta(y)}j δ(x)δ(f)i+δ(y)δ(f)j
二维曲线是三维曲面的一个特例,一条等高线
二维曲线梯度方向是二元函数的函数值增长最快的x0y平面上的方向。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-21MOExd4-1616595470547)(C:\Users\熊\AppData\Roaming\Typora\typora-user-images\image-20210324171100695.png)]

二、场的基本概念

1.标量场:

空间内的每个点对应一个u(x,y,z)的数值,但没有方向,给坐标算出来大小(温度场)

2.矢量场:

到处都是矢量,每个点的矢量的大小和方向都不一样,空间内的每个点对应一个向量F,既有大小又有方向,给坐标能算出来大小

矢量场就是向量场分解为到三个坐标轴上,F(x,y,z)=P(x,y,z)i+Q(x,y,z)j+R(x,y,z)k

例如:游泳池中水的速度

3.算子

i,j,k三个矢量是三个坐标轴上的单位矢量
一般会给矢量在坐标轴上的各个分量,即一个矢量函数表达式与算子运算
在这里插入图片描述

三、 通量,散度、高斯公式(散度定理)、对坐标的曲面积分——场的定理1

1.通量(标量)公式:

通量:是单位时间内流过曲面的流量,例如:穿过面的电场线、磁场线的根数
计算方法:矢量分量与微元分量垂直的乘积结果
1、矢量通过平面的通量是垂直于平面的分量乘以平面面积
2、矢量通过曲面的通量是曲面表面的向量场在曲面法向量上的乘积的积分,也就是对坐标的曲面积分
举例:磁通量是标量,磁感应强度和面积是矢量,平面的磁通量是垂直平面的磁场强度与平面的乘积。

矢量点积推导结果:第二类曲面积分,对坐标的曲面积分
在这里插入图片描述

2.散度(标量)公式:

理解:某一点的散度代表向量场中这点(是小立方体,不是面的微元)的向量总值是流入还是流出

记忆:一个矢量沿坐标轴的三个分量分别对三个方向求偏导
为什么散度是这个表达式?在注里面有通过小立方体推导散度的表达式

在这里插入图片描述

3.高斯公式(即散度定理):

条件:1.封闭,不封闭则不能用高斯公式 2.外侧 3.三个偏导为常数
理解:
通量推导:通过封闭曲面的通量=通过封闭曲面围成立体的通量代数和=通过立体内的小立方体的通量的和=立方体内每一点的散度和

当封闭曲面体积无限小即一点(小立方体),这一点通量就是这一点的散度,如果不封闭就不能用小立方体的通量代替表面的通量。

散度是一种给出三维坐标就能确定大小的标量,类似三重积分给出立体的体密度f(x,y,z)可以求立体的质量。

记忆:矢量对封闭曲面的第二类曲面积分(对坐标的曲面积分)等于散度对曲面围成立体的三重积分,其中cosa、cosb,cosr是曲面上的点的法向量的方向余弦

在这里插入图片描述

四、环流量、旋度、斯托克斯公式、对空间坐标的曲线积分——场的定理2

1.环流量(标量)公式:

路径积分:矢量分解成沿着这条线的分量乘以路径长度例如:匀强电场中Elcosaz作用是电势差
环流量描述矢量沿封闭曲面的边界转了一圈的矢量的投影的总和

矢量点积推导结果如下:第二类曲线积分,矢量对空间封闭曲线的第二类曲线积分
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-CnvEBUMJ-1616595470566)(C:\Users\熊\AppData\Roaming\Typora\typora-user-images\image-20210324170628544.png)]

2.旋度(矢量)公式:

理解记忆:描述一个小曲面的边界上沿着这个边界转了一圈的矢量的投影的总和

描述矢量场中某点微元在矢量场中的旋转程度,是矩阵计算出来的三个偏导相减的式子

在这里插入图片描述

3.斯托克斯公式(即旋度定理):

理解记忆:

环流量推导:通过封闭曲线的环流量=通过封闭曲线围成面的环流量=通过封闭曲面内的小环流量的和=曲面内每一点的旋度和

格林公式的推广,矢量对空间封闭曲线的第二类曲线积分等于旋度对空间曲线围成面的二重积分

在这里插入图片描述

4.空间曲线积分与路径无关

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-a7EGzVBu-1616595470568)(C:\Users\熊\AppData\Roaming\Typora\typora-user-images\image-20210324170224853.png)]

五、场的定理1:平面环流量,平面旋度,对平面坐标的曲线积分、格林公式:

1.平面环流量(标量):

矢量场对平面内的闭合曲线的第二类曲线积分

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-CcXLvVKd-1616595470552)(C:\Users\熊\AppData\Roaming\Typora\typora-user-images\image-20210324170742915.png)]

2.平面旋度公式(矢量):

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-qXUR8Nm7-1616595470554)(C:\Users\熊\AppData\Roaming\Typora\typora-user-images\image-20210324170732701.png)]

3.格林公式:

条件:1.封闭 2.正向 3.两个偏导为常数

记忆:矢量对平面封闭曲线的第二类曲线积分等于旋度对曲线围成面的二重积分

在这里插入图片描述

4.平面曲线积分与路径无关

结论:当āQ/āx=āP/āy(旋度为0),则沿任何闭合曲线对场的第二类平面曲线积分为0

引申计算题:计算满足上述条件的不封闭曲线,自己如果补成封闭,则环路积分为0,则这一段的环路积分等于自己的补的线段的环路积分取相反数,而且我们补的线段可以是任意形状!!

理解:当条件成立时,即平面旋度为0,即是无旋场,比如静电场就是无旋场,静电场的环路定律结果为0

注:

1.理解梯无旋,旋无散

在这里插入图片描述

2.关于物理中静电场、静磁场的描述:

静电场是有源(有散)无旋场(由正电荷到无穷远处、由无穷远处到负电荷、由正电荷到负电荷)

静磁场是无源(无散)有旋场(由空间一点出发再回到某一点)

格林公式与斯托克斯公式——物理意义:矢量在闭合曲线上做点积得到环流量

1.静电场沿某一个闭合环路的回路积分为零——静电场环流量为零(无旋度、电场线不闭合)——静电场的安培环路定理

2.通电导线感生的磁场在一个闭合环路内点积不为零——静磁场环流量不为零(有旋度,电场线闭合)——静磁场的安培环路定理

3.变力拉着物体沿着闭合曲线做的功为零,有环流量吗?

高斯公式——物理意义:矢量在闭合曲面上做点积得到通量

1.静电场有源(有散度),所以静电场的曲面积分通量不为零——静电场的高斯定理

2.静磁场没有源(没有散度),所以静磁场的曲面积分通量为零——静磁场的高斯定理

3.散度物理意义

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
——————————————————————

4.旋度物理意义

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

作者: 谢惠民 出版社: 高等教育 出版年: 2004-1 页数: 408 定价: 33.90元 装帧: 平装 ISBN: 9787040129410 内容简介 · · · · · · 《数学分析习题课讲义(下册)》是教育部“国家理科基地创建名牌课程项目”的研究成果,其目的是为数学分析的习题课教学提供一套具有创新特色的教材和参考书。《数学分析习题课讲义(下册)》以编著者们近20年来在数学分析及其习题课方面的教学经验为基础,吸取了国内外多种教材和研究性论著中的大量成果,非常注意经典教学内容中的思想、方法和技巧的开拓和延伸,在例题的讲题中强调启发式和逐步深入,在习题的选取中致力于对传统内容的更新、补充与层次化。 《数学分析习题课讲义(下册)》分上、下两册出版。上册内容为极限理论和一元微积分,下册内容为无穷级数和多元微积分。 《数学分析习题课讲义(下册)》可作为高等院校理工科教师和学生在数学分析习题课方面的教材或参考书,也可以作为研究生入学考试和其他人员的数学分析辅导书。 目录 · · · · · · 第十三章 数项级数 513.1 无穷级数的基本概念 13.1.1 无穷级数的多种视角 13.1.2 思考题 §13.2 正项级数 13.2.1 比较判别法的一般形式 13.2.2 比较判别法的特殊形式 13.2.3 其他判别法 13.2.4 例题 13.2.5 练习题 §13.3 一般项级数 13.3.1 一般项级数的敛性判别法 13.3.2 一般项级数的基本性质 13.3.3 例题 13.3.4 练习题 §13.4 无穷乘积 13.4.1 基本内容 13.4.2 例题 13.4.3 练习题 §13.5 对于教学的建议 13.5.1 学习要点 13.5.2 参考题 第十四章 函数项级数与幂级数 514.1 一致收敛性及其判别法 14.1.1 基本内容 14.1.2 例题 14.1.3 练习题 §14.2 和函数与极限函数的性质 14.2.1 三分法与极限顺序交换原理 14.2.2 例题 14.2.3 准一致收敛与控制收敛定理 14.2.4 练习题 §14.3 幂级数的收敛域与和函数 14.3.1 幂级数的基本理论 14.3.2 思考题 14.3.3 例题 14.3.4 练习题 §14.4 函数的幂级数展开 14.4.1 Taylor级数与函数的幂级数展开 14.4.2 将函数展开为幂级数的基本方法 14.4.3 例题 14.4.4 练习题 §14.5 对于教学的建议 14.5.1 学习要点 15.5.2 参考题 第十五章 Fourier级数 §15.1 Fourier系数 15.1.1 Fourier系数的计算公式 15.1.2 Fourier系数的渐近性质 15.1.3 Fourier系数的几何意义 15.1.4 例题 15.1.5 练习题 515.2 Fourier级数的收敛性 15.2.1 Dirichler核和点收敛性 15.2.2 Gibbs现象 15.2.3 Fourier级数的?eshro求和 15.2.4 Fourier级数的平方平均收敛 15.2.5 Fourier级数的一致收敛性 15.2.6 例题 15.2.7 练习题 §15.3 对于教学的建议 15.3.1 学习要点 15.3.2 参考题 第十六章 无穷级数的应用 §16.1 积分计算 16.1.1 关于逐项积分的补充命题 16.1.2 例题 16.1.3 练习题 §16.2 级数求和计算 16.2.1 级数求和法 16.2.2 例题 16.2.3 练习题 §16.3 连续函数的逼近定理 16.3.1 核函数方法 16.3.2 Bernstein证明的概率解释 16.3.3 逼近定理的一个初等证明 16.3.4 逼近定理的其他证明 16.3.5 逼近定理的应用举例 16.3.6 练习题 16.4 用级数构造函数 16.4.1 处处连续处处不可微的函数 16.4.2 填满正方形的连续曲线 §16.5 对于教学的建议 16.5.1 学习要点 16.5.2 参考题 第十七章 高维空间的点集与基本定理 §17.1 点与点集的定义及其基本性质 17.1.1 点的分类及其性质 17.1.2 集合的分类及其性质 17.1.3 思考题 17.1.4 练习题 §17.2 R中的几个基本定理 17.2.1 综述 17.2.2 例题 17.2.3 练习题 §1.7.3 对于教学的建议 17.3.1 学习要点 17.3.2 参考题 第十八章 多元函数的极限与连续 518.1 多元函数的极限 18.1.1 重极限 18.1.2 累次极限 18.1.3 证明函数的重极限不存在的常用方法 18.1.4 思考题 18.1.5 关于累次极限换序 18.1.6 练习题 §18.2
相关推荐
©️2020 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页