阵列信号处理——研究背景与现状

一、研究背景

阵列信号处理作为信号处理的一个重要分支,它在通信、雷达、声呐、地震勘探和射电天文等领域获得了广泛应用和迅速发展。阵列信号处理是指将一组传感器按一定方式布置在空间不同位置上,形成传感器阵列,用传感器阵列来接收空间信号,相当于对空间分布的场信号采样,得到信号源的空间离散观测数据。

阵列信号处理的目的是通过对阵列接收的信号进行处理,增强所需有用信号,抑制无用的干扰和噪声,并提取有用的信号特征及信号所包含的信息。与传统的单个定向传感器相比,传感器阵列具有灵活的波束控制、较高的信号增益、极强的干扰抑制能力及更高的空间分辨能力等优点,这也是近几十年来阵列信号处理理论得以蓬勃发展的根本原因。阵列信号处理研究的主要问题包括以下几个方面:

波束形成技术——使阵列天线方向图的主瓣指向所需的方向,并将干扰置零。
空间谱估计——对空间信号波达方向的分布进行超分辨估计。
信号源定位——确定阵列到信源的仰角和方位角,甚至频率、时延和距离等。
信源分离——确定各个信源发射的信号波形。各个信源从不同方向到达阵列,这一事实使得这些信号波形得以分离,即使它们在时域和频域是叠加的。

二、波束形成技术

波束形成(Beamforming,BF)亦称空域滤波,是阵列处理的一个主要方面,并逐步成为阵列信号处理的标志之一。波束形成的实质是通过对各阵元加权进行空域滤波,来达到增强期望信号、抑制干扰的目的;而且可以根据信号环境的变化自适应地改变各阵元的加权因子。自提出自适应天线这个术语以来,自适应天线发展已历经50多年了。自适应研究的重点一直是自适应波束形成算法,而且经过前人的努力,已经总结出许多好的算法。

自适应阵列的优良性能是通过自适应算法来实现的,有多种准则来确定自适应权。它们包括①最小均方误差(Minimum Mean Square Error, MMSE )准则;②最大SINR准则;③最大似然比(Maximum-Likelihood,ML)准则;④最小噪声方差准则。在理想情况下,这四种准则得到的权是等价的。因此在自适应算法中选用哪一种性能度量并不重要,而选择什么样的算法来调整阵列波束方向图进行自适应控制才是非常重要的。

自适应算法分为闭环算法和开环算法,在早期主要注重于闭环算法的研究,常用的闭环算法有LMS算法、差分最陡下降算法、加速梯度算法及它们的变形算法。

广义旁瓣相消器(Generalized Side Lobe Canceller,GSC)是线性约束最小方差(Linearly Constraint Minimum Variance,LCMV)的一种等效实现结构,GSC结构将自适应波束形成的约束优化问题转换为无约束的优化问题,分为自适应和非自适应两个支路,分别称为辅助支路和主支路,要求期望信号只能从非自适应的主支路通过,而自适应的辅助支路中仅含有干扰和噪声分量,其自适应过程可以克服传统方法中期望信号含于协方差矩阵引起的信号对消问题。

但是正如文献中所指出,由于阵列天线误差的存在,GSC的阻塞矩阵并不能很好地将期望信号阻塞掉,而是使一部分能量泄漏到辅助支路中。当信噪比较高的时候,辅助支路中含有与噪声相当的期望信号能量,会出现严重的上下支路期望信号抵消的现象

三、空间谱估计方法

阵列信号处理的另一个基本问题是空间信号到达方向(Direction of Arrival,DOA)的问题,这也是雷达、声呐等许多领域的重要任务之一。

DOA估计的基本问题是确定同时处在空间某一区域内多个感兴趣的信号的空间位置(各个信号到达阵列参考阵元的方向角,简称波达方向)。

波束形成实质上也是一个波达方向估计问题,只不过它们都是非参数化的波达方向估计器。这些估计的分辨率取决于阵列长度。阵列长度确定后,其分辨率也就被确定,称为瑞利限。超瑞利限的方法称为超分辨方法。最早的超分辨DOA估计方法是著名的MUSIC方法和ESPRIT方法,它们同属特征结构的子空间方法。

子空间方法建立在这样一个基本观察之上:若传感器个数比信源个数多,则阵列数据的信号分量一定位于一个低秩的子空间;在一定条件下,这个子空间将惟一确定信号的波达方向,并且可以使用数值稳定的奇异值分解精确地确定波达方向。

由于高阶累积量对高斯噪声不敏感,一些学者利用阵列输出的高阶累积量(通常是四阶累积量)代替二阶累积量进行空间谱估计。利用高阶累积量估计空间谱的好处是合成阵列的阵元数较实际阵元数多,即阵列扩展特性。但是,高阶累积量对非高斯噪声无能为力,并且计算量较大。

基于空时频三维子空间的空间谱估计方法。随着阵列信号处理理论研究不断深入,非平稳信号的波达方向估计成为了阵列信号处理领域研究的另一重点内容。在实际应用中,许多典型信号是非平稳的或谱时变的,而传统的子空间波达方向估计方法主要针对平稳信号。因此,利用传统子空间方法对非平稳信号进行DOA估计,显然存在先天性不足。

在许多场合中,信号的一些先验知识是可以利用的。那么,如何利用信号的一些先验知识,在空时频三维子空间内对信号进行处理?将一维时域信号映射到二维时频域中,因此能够在空、时、频三维空间中更精细、更准确地刻画和反映非平稳信号的特征和细节。

利用时变滤波等方法,将一些在低维空间中难以区分的、但具有不同时频特征的信号加以分离,同时有效地抑制干扰,使得DOA估计方法具有信号选择性及更好的分辨率和更强的抗干扰和噪声的能力。此方法适用于平稳信号和非平稳信号的DOA估计。

四、阵列多参数估计

在阵列信号多维参数估计中,通常研究的多维参数估计包括二维DOA估计、DOA与频率联合估计、DOA与时延联合估计、DOA与极化联合估计等。

(1)二维DOA估计。二维DOA估计一般采用L型阵列、交叉十字阵列和面阵等实现二维参数的估计。二维DOA估计方法包括最大似然法、二维MUSIC算法、二维ESPRIT算法、传播算子方法、高阶累积量方法和波达方向矩阵法等。M.P.Clark和L.Scharf于1991年提出了二维最大似然法,依据最大似然准则对阵列的输出数据进行时空二维处理,获取二维参数的估计。M.Wax提出了二维MUSIC算法;Hua等人也给出了基于L型阵列的二维MUSIC算法。

(2)DOA与频率联合估计。角度与频率联合估计方法包括线性预测方法、多维MUSIC方法、最大似然方法和ESPRIT方法等。这些方法中,线性预测方法的估计性能略差,最大似然方法和多维MUSIC方法则具有较好的估计性能,然而最大似然方法需要进行多维非线性最优化搜索,多维MUSIC方法也需要进行多维的穷尽搜索,二者计算量都很大。ESPRIT算法由于无须谱峰搜索,且参数估计性能也相当优越,其应用研究更为丰富。

(3)DOA与时延联合估计。DOA与时延联合估计方法包括最大似然方法、多维MUSIC算法和ESPRIT算法等。

(4)DOA与极化联合估计。角度和极化联合估计目前常使用的方法主要有子空间方法和高阶累积量方法。用于DOA与极化联合估计的子空间方法主要是ESPRIT算法和MUSIC算法。

参考文献:阵列信号处理及MATLAB实现;张小飞,陈华伟,仇小锋(编著)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值