Tensorflow详解(二)

1.张量

属性1.操作——张量的名称

        2.维度——描述张量的维度信息

        3.数据类型

2.Session会话——会话是Tensorflow的运行模型,管理程序运行的所有资源

  执行计算图——Session类提供了run()方法,用户给run()函数传入需要计算的节点,同时提供输入的数据,Tensorflow就

                          会 自动寻找所有需要计算的节点,并按依赖顺序执行他们

为计算图添加新的节点和边——Session类提供了extend()方法,用来完善计算图

  2.1会话的使用方法    

用法一:

             sess=tf.Session()     #1.用Session类构件会话

             sess.run()            #2.运行会话

             sess.close()         #3.关闭会话

用法二——使用with/as环境上下文管理器

              with tf.Session() as sess:

                      with—block

 

2.2将会话设定为默认会话

 方法一:as_default()

             sess=tf.Session()

              with  sess.as_default():

                      with—block

  方法二:InteractiveSession类构件默认会话

                 sess=tf.InteractiveSession()

说明,当默认会话被设定后,可以通过Tensor.eval()函数来计算一个张量的取值。与Session.run功能相同

 

3.Session的参数配置

      tf.ConfigProto()函数用在创建session的时候,用来对session进行参数配置:  

      参数1:log_device_placement=True,日志中将会记录运行每一个节点所使用的设备,然后打印输出

      参数2:allow_soft_placement=True ,允许tf自动选择一个存在并且可用的设备来运行操作

4.placeholder机制——用于在会话运行时动态提供输入数据

      tf.placeholder(dtype,shape,name)  #定义位置

      sess.run()   #中的feed_dict(是一个字典)用来接收数据,

 

 

   

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值