1.张量
属性1.操作——张量的名称
2.维度——描述张量的维度信息
3.数据类型
2.Session会话——会话是Tensorflow的运行模型,管理程序运行的所有资源
执行计算图——Session类提供了run()方法,用户给run()函数传入需要计算的节点,同时提供输入的数据,Tensorflow就
会 自动寻找所有需要计算的节点,并按依赖顺序执行他们
为计算图添加新的节点和边——Session类提供了extend()方法,用来完善计算图
2.1会话的使用方法
用法一:
sess=tf.Session() #1.用Session类构件会话
sess.run() #2.运行会话
sess.close() #3.关闭会话
用法二——使用with/as环境上下文管理器
with tf.Session() as sess:
with—block
2.2将会话设定为默认会话
方法一:as_default()
sess=tf.Session()
with sess.as_default():
with—block
方法二:InteractiveSession类构件默认会话
sess=tf.InteractiveSession()
说明,当默认会话被设定后,可以通过Tensor.eval()函数来计算一个张量的取值。与Session.run功能相同
3.Session的参数配置
tf.ConfigProto()函数用在创建session的时候,用来对session进行参数配置:
参数1:log_device_placement=True,日志中将会记录运行每一个节点所使用的设备,然后打印输出
参数2:allow_soft_placement=True ,允许tf自动选择一个存在并且可用的设备来运行操作
4.placeholder机制——用于在会话运行时动态提供输入数据
tf.placeholder(dtype,shape,name) #定义位置
sess.run() #中的feed_dict(是一个字典)用来接收数据,