数据分析---arXiv论文种类分类

本文探讨了如何利用BERT模型对arxiv论文的标题和摘要进行处理,通过TF-IDF、FastText、WordVec和深度学习方法,实现多类别论文的高效分类,着重介绍了使用高级词向量BERT构建深度分类器的详细过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文种类分类

4.1 任务说明

  • 主题:论文分类(数据建模任务),利用已有数据建模,对新论文进行类别分类;
  • 内容:使用论文标题完成类别分类;

4.2 数据处理步骤

在原始arxiv论文中论文都有对应的类别,而论文类别是作者填写的。在本次任务中可以借助论文的标题和摘要完成:

  • 对论文标题和摘要进行处理;
  • 对论文类别进行处理;
  • 构建文本分类模型;

4.3 文本分类思路

  • 思路1:TF-IDF+机器学习分类器

直接使用TF-IDF对文本提取特征,使用分类器进行分类,分类器的选择上可以使用SVM、LR、XGboost等

  • 思路2:FastText

FastText是入门款的词向量,利用Facebook提供的FastText工具,可以快速构建分类器

  • 思路3:WordVec+深度学习分类器

WordVec是进阶款的词向量,并通过构建深度学习分类完成分类。深度学习分类的网络结构可以选择TextCNN、TextRnn或者BiLSTM。

  • 思路4:Bert词向量

Bert是高配款的词向量,具有强大的建模学习能力。

4.4 具体代码实现以及讲解

首先完成字段读取:

# 导入所需的package
import seaborn as sns #用于画图
from bs4 import BeautifulSoup #用于爬取arxiv的数据
import re #用于正则表达式,匹配字符串的模式
import requests #用于网络连接,发送网络请求,使用域名获取对应信息
import json #读取数据,我们的数据为json格式的
import pandas as pd #数据处理,数据分析
import matplotlib.pyplot as plt #画图工具
def readArxivFile(path, columns=['id', 'submitter', 'authors', 'title', 'comments', 'journal-ref', 'doi',
       'report-no', 'categories', 'license', 'abstract', 'versions',
       'update_date', 'authors_parsed'], count=None):
    '''
    定义读取文件的函数
        path: 文件路径
        columns: 需要选择的列
        count: 读取行数
    '''
    
    data  = []
    with open(path, 'r') as f: 
        for idx, line in enumerate(f): 
            if idx == count:
                break
                
            d = json.loads(line)
            d = {
   
   col : d[col] for col in columns}
            data.append(d)

    data = pd.DataFrame(data)
    return data

data = readArxivFile('G:/arxiv-metadata-oai-snapshot.json', 
                     ['id', 'title', 'categories', 'abstract'],
                    200000)

data  = [] #初始化
#使用with语句优势:1.自动关闭文件句柄;2.自动显示(处理)文件读取数据异常
with open("G:/arxiv-metadata-oai-snapshot.json", 'r') as f: 
    for idx, line in enumerate(f
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值