数据分析项目实战——链家深圳二手房房源数据分析

本文利用Python对链家深圳二手房房源数据进行清洗、分析和可视化,探讨了行政区、户型、朝向、装修等因素对房价的影响,旨在为购房者提供参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

本项目主要是利用Python对语言链家二手房房源数据进行分析,通过数据可视化了解深圳的二手房源情况,对人们购房做出指导。分析过程主要围绕一下方面展开:项目背景、项目简介、项目流程(数据来源、分析目标、数据理解、数据可视化与分析)、项目总结。

一、项目背景

随着经济的发展,北、上、广、深这四大都市迅速发展,在经济、政治等方面有突出的表现,而且工作机会多,生活质量较高,是大多数人所向往的地方。但是要在这些城市定居是一件不容易的事情,这样来说购买二手房是一个可以选择的方案,说到这我们一定会想了解这些地区的房源大概情况。所以本项目是对深圳链家二手房房源进行的分析,希望可以帮助部分人解决购房问题,从多维度出发分析,帮助买家拿定主意,实现合理的购房!!

二、核心技术

Numpy、pandas、Matplotlib库的使用,数据清洗,数据可视化(也可用Tableau实现)

三、数据来源

数据来源于和鲸社区,附链接:
https://www.kesci.com/home/dataset/5e5e3effb8dfce002d7ed893

四、数据理解

深圳二手房房源信息:

  • 数据量级:18906条;
  • 数据说明:
    area:行政区(如:南山区)
    title:房源信息标题
    community:小区
    position:地段位置(如:万象城)
    tax:税率相关(如:房本满五年)
    total_price:总价,单位:万元
    unit_price:单价,单位:元/平米
    hourseType:户型(如:三室一厅)
    hourseSize:面积,单位:平米
    direction:房间朝向
    fitment:装修(如:精装,简装)

五、分析目的

1.了解圳二手房的大体情况,通过对不同行政区、不同户型、不同朝向、不同装修进行分析来了解
2.分析深圳二手房房价的影响因素有哪些?优质房源有哪些?
3.怎么选择合适的房源?

六、数据分析与可视化

(一)数据清洗

  1. 引入使用的库
import numpy as np
import pandas as pd 
import matplotlib.pyplot as plt
from pylab import mpl
mpl.rcParams['font.sans-serif'] = ['FangSong'] # 指定默认字体
#读取数据文件,查看数据的大体情况
df = pd.read_csv('./Python案例数据/shenzhen.csv')
df.head()

在这里插入图片描述

df.describe() # 查看数据列的数据 

在这里插入图片描述
2.房间大小有夸大的部分,经过查询发现房价与房源面积不符合客观事实,进行删除

#房间大小超过10000平米的数据
df[df['hourseSize']>10000]

在这里插入图片描述

df.drop(df[df['hourseSize']>1000].index,inplace=True)
df[df['hourseSize']>10000]   #确认是否正确删除

在这里插入图片描述
3.数据概览:

#查看每列的总数、数据类型
df.info()

发现title和tax列存在缺失数据,但这两列不是需要分析的列。其它列数据完整,不需要进行处理。
在这里插入图片描述
4. 重复值处理:

# 查看重复值
df[df.duplicated()]

在这里插入图片描述
数据清洗完成,开始数据分析。

(二)数据分析

1.了解圳二手房房源的整体情况(总体分析)
主要从四个方面出发利用matplotlib绘制饼图。
不同行政区、户型、朝向、装修与二手房房源数量的对比
数据处理:

# 不同行政区房源数量占比
area_house_count = df.groupby('area')['area'].count()
area_house_count.sort_values(ascending=False,inplace=True)  #按照降序排列
# area_house_count

# 不同户型房源数量占比
hourseType_count = df.groupby('hourseType')['hourseType'].count()
hourseType_count.sort_values(ascending=False,inplace=True)  #按照降序排列
new_hourseType_count = hourseType_count[hourseType_count>700]
new_hourseType_count['其它'] = hourseType_count[hourseType_count<700].sum()
# new_hourseType_count

# 不同朝向房源数量占比()
direction_count = df.groupby('direction')['direction'].count()  
new_direction_count =direction_count[direction_count>800]
new_direction_count['其它'] = direction_count[direction_count<800].sum()
new_direction_count.sort_values(ascending=False)

# 不同装修
fitment_count = df.groupby('fitment')['fitment']</
### 回答1: 对于python数据分析项目——上海二手房数据分析(一),我可以提供一些帮助。首先,你可以使用Python中的Pandas库来收集和处理上海二手房的数据。Pandas可以帮助你从网站上获取相关信息,并针对指定的数据集执行许多不同的操作,以便更好地分析和理解这些数据。此外,还可以使用Matplotlib库来可视化数据,以便更清楚地了解上海二手房的特征。 ### 回答2: 上海二手房数据分析是一个使用Python进行数据探索和分析项目。通过对网站上的二手房数据进行爬虫操作,我们可以获取到大量的关于上海二手房的信息。 在这个项目中,我们首先需要搭建一个爬虫,用于从网站上获取到二手房的数据。我们可以利用Python中的网络请求库和解析库,如requests和BeautifulSoup,来发送网络请求并解析返回的网页内容,从而获取到我们需要的数据。 获取到数据后,我们可以进行数据清洗和预处理。这一步骤主要是针对数据中存在的缺失值、异常值等问题进行处理,以确保数据的准确性和一致性。我们可以使用Python中的pandas库来进行数据的清洗和预处理操作。 接下来,我们可以对数据进行探索性分析。通过使用Python中的数据可视化库,如matplotlib和seaborn,我们可以对数据的特征进行可视化展示,以便更好地理解数据的分布和关系。我们可以绘制直方图、散点图、箱线图等来探索二手房价格、面积、位置等特征与其他变量之间的关系。 最后,我们可以进行一些统计分析,如计算二手房价格的平均值、中位数等统计指标,以及进行一些基本的回归分析,如线性回归等。这些分析可以帮助我们揭示出二手房市场的一些趋势和规律,为我们做出更好的决策提供依据。 总之,上海二手房数据分析项目是一个利用Python进行数据爬取、清洗、探索和分析项目,通过对这些步骤的操作,我们可以更好地理解上海二手房市场的情况,并从中获取到有价值的信息。 ### 回答3: 是中国最大的房地产经纪公司之一,在其网站上能够找到各个城市的二手房信息。本项目选取了上海的二手房数据进行分析。 首先,我们需要从网站上爬取二手房的相关数据,包括房屋的价格、面积、区域、朝向、装修情况等等。通过分析这些数据,我们能够得到一些有趣的结论。 比如,我们可以通过计算平均价格和面积,找出上海不同区域二手房的价格及面积分布情况。通过这些分布情况,我们可以了解到哪些区域的二手房更贵,哪些区域的二手房面积更大,帮助购房者做出更明智的决策。 此外,我们还可以通过数据分析,得到不同房屋朝向和装修情况对价格的影响。通过比较不同朝向和装修情况下的价格差异,我们可以了解到市场对于这些因素的偏好,从而也为购房者提供一些参考。 另外,我们还可以通过分析不同时间段内的二手房成交量,找出上海二手房市场的活跃时段。这对于购房者来说也是非常有用的,因为他们可以根据市场活跃程度来选择合适的时间进行购买。 最后,我们还可以通过数据分析,找出上海二手房市场的热门区域和热门楼盘。这些信息对于投资者来说尤为重要,因为他们可以根据市场趋势来选择合适的投资区域和楼盘。 通过对上海二手房数据的分析,我们可以得到很多有用的信息,帮助购房者和投资者做出更明智的决策。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值