(pytorch-深度学习系列)卷积神经网络LeNet-学习笔记

卷积神经网络LeNet

先上图:LeNet的网络结构
在这里插入图片描述

卷 积 ( 6 个 5 ∗ 5 的 核 ) → 降 采 样 ( 池 化 ) ( 2 ∗ 2 的 核 , 步 长 2 ) → 卷 积 ( 16 个 5 ∗ 5 的 核 ) → 降 采 样 ( 池 化 ) ( 2 ∗ 2 的 核 , 步 长 2 ) → 全 连 接 16 ∗ 5 ∗ 5 → 120 → 全 连 接 120 → 84 → 全 连 接 84 → 10 \begin{matrix}卷积 \\ (6个5*5的核) \end{matrix} \rightarrow \begin{matrix}降采样(池化) \\ (2*2的核,步长2) \end{matrix}\rightarrow \begin{matrix}卷积 \\ (16个5*5的核) \end{matrix} \rightarrow \begin{matrix}降采样(池化) \\ (2*2的核,步长2)\end{matrix}\rightarrow \\ \\ \begin{matrix}全连接 \\ 16*5*5\rightarrow120\end{matrix}\rightarrow \begin{matrix}全连接 \\ 120\rightarrow84\end{matrix}\rightarrow \begin{matrix}全连接 \\ 84\rightarrow10\end{matrix} (655)()(222)(1655)()(222)1655120120848410

LeNet分为卷积层块和全连接层块两个部分。

卷积层

卷积层块里的基本单位是卷积层后接最大池化层
卷积层用来识别图像里的空间模式,如线条和物体局部,之后的最大池化层则用来降低卷积层对位置的敏感性。卷积层块由两个这样的基本单位重复堆叠构成。

  • 在卷积层块中,每个卷积层都使用 5 × 5 5\times 5 5×5的窗口,并在输出上使用sigmoid激活函数。
  • 第一个卷积层输出通道数为6,第二个卷积层输出通道数则增加到16。这是因为第二个卷积层比第一个卷积层的输入的高和宽要小,所以增加输出通道使两个卷积层的参数尺寸类似。
  • 卷积层块的两个最大池化层的窗口形状均为 2 × 2 2\times 2 2×2,且步幅为2。由于池化窗口与步幅形状相同,池化窗口在输入上每次滑动所覆盖的区域互不重叠。

全连接层

卷积层块的输出形状为(批量大小, 通道, 高, 宽)
当卷积层块的输出传入全连接层块时,全连接层块会将小批量中每个样本变平(flatten)。也就是说,全连接层的输入形状将变成二维

  • 其中第一维是小批量中的样本
  • 第二维是每个样本变平后的向量表示,且向量长度为通道、高和宽的乘积

全连接层块含3个全连接层。它们的输出个数分别是120、84和10,其中10为输出的类别个数。

实现模型

下面通过Sequential类来实现LeNet模型。

import time
import torch
from torch import nn, optim

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

class LeNet(nn.Module):
    def __init__(self):
        super(LeNet, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(1, 6, 5), # in_channels, out_channels, kernel_size
            nn.Sigmoid(),
            nn.MaxPool2d(2, 2), # kernel_size, stride
            nn.Conv2d(6, 16, 5),
            nn.Sigmoid(),
            nn.MaxPool2d(2, 2)
        )
        self.fc = nn.Sequential(
            nn.Linear(16*4*4, 120),
            nn.Sigmoid(),
            nn.Linear(120, 84),
            nn.Sigmoid(),
            nn.Linear(84, 10)
        )

    def forward(self, img):
        feature = self.conv(img)
        output = self.fc(feature.view(img.shape[0], -1))
        return output
net = LeNet()
print(net)
LeNet(
  (conv): Sequential(
    (0): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
    (1): Sigmoid()
    (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (3): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
    (4): Sigmoid()
    (5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (fc): Sequential(
    (0): Linear(in_features=256, out_features=120, bias=True)
    (1): Sigmoid()
    (2): Linear(in_features=120, out_features=84, bias=True)
    (3): Sigmoid()
    (4): Linear(in_features=84, out_features=10, bias=True)
  )
)

获取数据集

def load_data_fashion_mnist(batch_size, resize=None, root='~/Datasets/FashionMNIST'):
    """Download the fashion mnist dataset and then load into memory."""
    trans = []
    if resize:
        trans.append(torchvision.transforms.Resize(size=resize))
    trans.append(torchvision.transforms.ToTensor())
    
    transform = torchvision.transforms.Compose(trans)
    mnist_train = torchvision.datasets.FashionMNIST(root=root, train=True, download=True, transform=transform)
    mnist_test = torchvision.datasets.FashionMNIST(root=root, train=False, download=True, transform=transform)
    if sys.platform.startswith('win'):
        num_workers = 0  # 0表示不用额外的进程来加速读取数据
    else:
        num_workers = 4
    train_iter = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True, num_workers=num_workers)
    test_iter = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=False, num_workers=num_workers)

    return train_iter, test_iter
    
batch_size = 256
train_iter, test_iter = load_data_fashion_mnist(batch_size=batch_size)

训练模型

模型准确率计算:

def evaluate_accuracy(data_iter, net, device=None):
    if device is None and isinstance(net, torch.nn.Module):
        # 如果没指定device就使用net的device
        device = list(net.parameters())[0].device
    acc_sum, n = 0.0, 0
    with torch.no_grad():
        for X, y in data_iter:
            if isinstance(net, torch.nn.Module):
                net.eval() # 评估模式, 这会关闭dropout
                acc_sum += (net(X.to(device)).argmax(dim=1) == y.to(device)).float().sum().cpu().item()
                net.train() # 改回训练模式
            else: 
                if('is_training' in net.__code__.co_varnames): # 如果有is_training这个参数
                    # 将is_training设置成False
                    acc_sum += (net(X, is_training=False).argmax(dim=1) == y).float().sum().item() 
                else:
                    acc_sum += (net(X).argmax(dim=1) == y).float().sum().item() 
            n += y.shape[0]
    return acc_sum / n

在GPU上训练模型:

def train(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs):
    net = net.to(device)
    print("training on ", device)
    loss = torch.nn.CrossEntropyLoss()
    for epoch in range(num_epochs):
        train_l_sum, train_acc_sum, n, batch_count, start = 0.0, 0.0, 0, 0, time.time()
        for X, y in train_iter:
            X = X.to(device)
            y = y.to(device)
            y_hat = net(X)
            l = loss(y_hat, y)
            optimizer.zero_grad()
            l.backward()
            optimizer.step()
            train_l_sum += l.cpu().item()
            train_acc_sum += (y_hat.argmax(dim=1) == y).sum().cpu().item()
            n += y.shape[0]
            batch_count += 1
        test_acc = evaluate_accuracy(test_iter, net)
        print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f, time %.1f sec'
              % (epoch + 1, train_l_sum / batch_count, train_acc_sum / n, test_acc, time.time() - start))

学习率采用0.001,训练算法使用Adam算法,损失函数使用交叉熵损失函数。

lr, num_epochs = 0.001, 5
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
train(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值