卷积神经网络LeNet
先上图:LeNet的网络结构
卷 积 ( 6 个 5 ∗ 5 的 核 ) → 降 采 样 ( 池 化 ) ( 2 ∗ 2 的 核 , 步 长 2 ) → 卷 积 ( 16 个 5 ∗ 5 的 核 ) → 降 采 样 ( 池 化 ) ( 2 ∗ 2 的 核 , 步 长 2 ) → 全 连 接 16 ∗ 5 ∗ 5 → 120 → 全 连 接 120 → 84 → 全 连 接 84 → 10 \begin{matrix}卷积 \\ (6个5*5的核) \end{matrix} \rightarrow \begin{matrix}降采样(池化) \\ (2*2的核,步长2) \end{matrix}\rightarrow \begin{matrix}卷积 \\ (16个5*5的核) \end{matrix} \rightarrow \begin{matrix}降采样(池化) \\ (2*2的核,步长2)\end{matrix}\rightarrow \\ \\ \begin{matrix}全连接 \\ 16*5*5\rightarrow120\end{matrix}\rightarrow \begin{matrix}全连接 \\ 120\rightarrow84\end{matrix}\rightarrow \begin{matrix}全连接 \\ 84\rightarrow10\end{matrix} 卷积(6个5∗5的核)→降采样(池化)(2∗2的核,步长2)→卷积(16个5∗5的核)→降采样(池化)(2∗2的核,步长2)→全连接16∗5∗5→120→全连接120→84→全连接84→10
LeNet分为卷积层块和全连接层块两个部分。
卷积层
卷积层块里的基本单位是卷积层后接最大池化层:
卷积层用来识别图像里的空间模式,如线条和物体局部,之后的最大池化层则用来降低卷积层对位置的敏感性。卷积层块由两个这样的基本单位重复堆叠构成。
- 在卷积层块中,每个卷积层都使用 5 × 5 5\times 5 5×5的窗口,并在输出上使用sigmoid激活函数。
- 第一个卷积层输出通道数为6,第二个卷积层输出通道数则增加到16。这是因为第二个卷积层比第一个卷积层的输入的高和宽要小,所以增加输出通道使两个卷积层的参数尺寸类似。
- 卷积层块的两个最大池化层的窗口形状均为 2 × 2 2\times 2 2×2,且步幅为2。由于池化窗口与步幅形状相同,池化窗口在输入上每次滑动所覆盖的区域互不重叠。
全连接层
卷积层块的输出形状为(批量大小, 通道, 高, 宽)。
当卷积层块的输出传入全连接层块时,全连接层块会将小批量中每个样本变平(flatten)。也就是说,全连接层的输入形状将变成二维:
- 其中第一维是小批量中的样本
- 第二维是每个样本变平后的向量表示,且向量长度为通道、高和宽的乘积。
全连接层块含3个全连接层。它们的输出个数分别是120、84和10,其中10为输出的类别个数。
实现模型
下面通过Sequential类来实现LeNet模型。
import time
import torch
from torch import nn, optim
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class LeNet(nn.Module):
def __init__(self):
super(LeNet, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(1, 6, 5), # in_channels, out_channels, kernel_size
nn.Sigmoid(),
nn.MaxPool2d(2, 2), # kernel_size, stride
nn.Conv2d(6, 16, 5),
nn.Sigmoid(),
nn.MaxPool2d(2, 2)
)
self.fc = nn.Sequential(
nn.Linear(16*4*4, 120),
nn.Sigmoid(),
nn.Linear(120, 84),
nn.Sigmoid(),
nn.Linear(84, 10)
)
def forward(self, img):
feature = self.conv(img)
output = self.fc(feature.view(img.shape[0], -1))
return output
net = LeNet()
print(net)
LeNet(
(conv): Sequential(
(0): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
(1): Sigmoid()
(2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(3): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
(4): Sigmoid()
(5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(fc): Sequential(
(0): Linear(in_features=256, out_features=120, bias=True)
(1): Sigmoid()
(2): Linear(in_features=120, out_features=84, bias=True)
(3): Sigmoid()
(4): Linear(in_features=84, out_features=10, bias=True)
)
)
获取数据集
def load_data_fashion_mnist(batch_size, resize=None, root='~/Datasets/FashionMNIST'):
"""Download the fashion mnist dataset and then load into memory."""
trans = []
if resize:
trans.append(torchvision.transforms.Resize(size=resize))
trans.append(torchvision.transforms.ToTensor())
transform = torchvision.transforms.Compose(trans)
mnist_train = torchvision.datasets.FashionMNIST(root=root, train=True, download=True, transform=transform)
mnist_test = torchvision.datasets.FashionMNIST(root=root, train=False, download=True, transform=transform)
if sys.platform.startswith('win'):
num_workers = 0 # 0表示不用额外的进程来加速读取数据
else:
num_workers = 4
train_iter = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True, num_workers=num_workers)
test_iter = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=False, num_workers=num_workers)
return train_iter, test_iter
batch_size = 256
train_iter, test_iter = load_data_fashion_mnist(batch_size=batch_size)
训练模型
模型准确率计算:
def evaluate_accuracy(data_iter, net, device=None):
if device is None and isinstance(net, torch.nn.Module):
# 如果没指定device就使用net的device
device = list(net.parameters())[0].device
acc_sum, n = 0.0, 0
with torch.no_grad():
for X, y in data_iter:
if isinstance(net, torch.nn.Module):
net.eval() # 评估模式, 这会关闭dropout
acc_sum += (net(X.to(device)).argmax(dim=1) == y.to(device)).float().sum().cpu().item()
net.train() # 改回训练模式
else:
if('is_training' in net.__code__.co_varnames): # 如果有is_training这个参数
# 将is_training设置成False
acc_sum += (net(X, is_training=False).argmax(dim=1) == y).float().sum().item()
else:
acc_sum += (net(X).argmax(dim=1) == y).float().sum().item()
n += y.shape[0]
return acc_sum / n
在GPU上训练模型:
def train(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs):
net = net.to(device)
print("training on ", device)
loss = torch.nn.CrossEntropyLoss()
for epoch in range(num_epochs):
train_l_sum, train_acc_sum, n, batch_count, start = 0.0, 0.0, 0, 0, time.time()
for X, y in train_iter:
X = X.to(device)
y = y.to(device)
y_hat = net(X)
l = loss(y_hat, y)
optimizer.zero_grad()
l.backward()
optimizer.step()
train_l_sum += l.cpu().item()
train_acc_sum += (y_hat.argmax(dim=1) == y).sum().cpu().item()
n += y.shape[0]
batch_count += 1
test_acc = evaluate_accuracy(test_iter, net)
print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f, time %.1f sec'
% (epoch + 1, train_l_sum / batch_count, train_acc_sum / n, test_acc, time.time() - start))
学习率采用0.001,训练算法使用Adam算法,损失函数使用交叉熵损失函数。
lr, num_epochs = 0.001, 5
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
train(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs)