Python数据分析与可视化

数据的四分位

对于每种单独的数据属性来说,可以通过数据的四分位法进行处理、查找和寻找离群值,从而对其进行分析和处理。

四分位数(quartile)是统计学中分位数的一种,即把所有数据由小到大排列并分成四等份,处于三个分割点位置的数据就是四分位数。

第一四分位数(Q1)又称“下四分位数”,等于该样本中所有数据由小到大排列后第25%的数据。

第二四分位数(Q2)又称“中位数”,等于该样本中所有数据由小到大排列后第50%的数据。

第三四分位数(Q3)又称“上四分位数”,等于该样本中所有数据由小到大排列后第75%的数据。

箱体结构:四分位在图形中根据Q1和Q3的位置绘制了一个箱体结构,即根据一组数据5个特征(min,Q1,Q2,Q3,max)的位置绘制的一个箱体结构。这种直观的箱线图反映出一组数据的特征分布,还显示了数据的最小值、中位数和最大值。

离群值:即部分不在框体内的数据被称为离群值,一般被视作特异点加以处理。

作用:四分位图是一个以更好、更直观的方式来识别数据中心异常值的方法,与数据处理的其他方式相比,更能有效让分析人员判断离群值。

 

数据的标准化

数据的标准化是将数据根据自身一定比例进行处理,落入一个小的特定区间,一般为(-1,1)。这样做的目的是取出数据的单位限制,将其转化为无量纲的纯数值,使得不同单位或量级的指标能够进行比较和加权,其中最常用的是0-1标准化和Z-score标准化。

离差标准化:0-1 normalization

X=\frac{X-\min }{\max -\min }

对原始数据的线性变换,使结果落到[0,1]区间。其中,max为样本数据的最大值,min为样本数据的最小值。这种方法有一个缺陷,就是当有数据加入时,可能导致max和min的变化,需要重新定义。

标准差标准化:zero-mean normalization

X=\frac{x-\mu}{\sigma}

经过处理的数据符合标准正态分布,即均值为0,标准差为1.其中μ为所有样本数据的均值,\sigma为所有样本数据的标准差。

一般情况下,通过数据的标准化处理后,数据最终落在(-1,1)的概率为99.7%,在(-1,1)之外的数据被设置成-1和1,以便处理。

 

数据的平行化处理

对于属性之间的横向比较,即每个目标行属性之间的比较,使用四分位法则较难判断。为了描述和表现每一个不同目标行之间的数据差异和不同,需要另外一种处理和展示方法。

参考:https://blog.csdn.net/wyfcode/article/details/82587440

平行坐标图(parallel coordinates plot)是对于具有多个属性问题的一种可视化方法,下图为平行坐标图的基本样式,数据集的一行数据在平行坐标图中用一条折线表示,纵向是属性值,横向是属性类别(用索引表示),如下图,一条数据[1 3 2 4]对应图中的折线。这条折线是根据属性的索引值和属性值画出来的。

平行坐标图

 平行坐标图的解读

首先我们用不同的颜色来标识不同的标签,那么关于属性与标签之间的关系,我们可以从图中获得哪些信息:

(1)折线走势“陡峭”与“低谷”只是表示在该属性上属性值的变化范围的大小,对于标签分类不具有决定意义,但是“陡峭“的属性上属性值间距较大,视觉上更容易区分出不同的标签类别

(2)标签的分类主要看相同颜色的折线是否集中,若在某个属性上相同颜色折线较为集中,不同颜色有一定的间距,则说明该属性对于预测标签类别有较大的帮助

(3)若某个属性上线条混乱,颜色混杂,则较大可能该属性对于标签类别判定没有价值

 总结:平行坐标图主要帮助我们观察目标与哪些属性相关,尤其适用在属性超过三个以上的问题中。

 

热点图-属性相关性检测

热点图是一种判断属性相关性的常用方法,根据不同目标行数据对应的数据相关性进行检测。

不同颜色之间显示了不同的相关性,彩色的深浅显示了相关性的强弱程度。

 

 

 

 

 

 

 

 

 

 

 

### 回答1: Python数据分析可视化是指使用Python语言进行数据收集、清理、转换、统计和可视化的过程。常用的Python数据分析可视化工具包括pandas、numpy、matplotlib、seaborn等。通过这些工具包,可以对结构化和非结构化数据进行处理和可视化,从而发现数据中的规律和趋势,做出更准确的数据分析和业务决策。 ### 回答2: Python数据分析可视化是使用Python编程语言进行数据处理和分析的过程。Python是一种通用的编程语言,它具有易学易用和强大的数据处理能力,因此被广泛应用于数据分析可视化。 在数据分析方面,Python提供了许多强大的数据处理和统计分析库,如NumPy、Pandas和SciPy等。这些库可以用于加载、清洗、分析和处理各种类型的数据。NumPy提供了高效的多维数组和矩阵操作,Pandas则提供了灵活的数据结构和数据分析工具,SciPy则提供了常用的科学计算和统计函数。这些库的组合使得Python变得特别适合用于数据预处理和数据分析。 此外,在数据可视化方面,Python也有很多流行的库,如Matplotlib、Seaborn和Plotly。这些库提供了绘制各种类型图表和可视化效果的功能,如折线图、柱状图、散点图、热图等。通过这些库,我们可以将数据可视化,展示数据的趋势、关联以及其他有用的信息。 Python数据分析可视化的流程通常包括以下几个步骤:数据准备,如加载和清洗数据;数据分析,如统计描述、数据挖掘和机器学习算法;数据可视化,如绘制图表和可视化效果;结果解释和报告,如解读数据结果和撰写报告。 总的来说,Python数据分析可视化提供了一个强大的工具集合,使得我们可以通过编程的方式更好地理解和分析数据。无论是在科学研究、商业分析还是其他领域,Python都是一个强大且受欢迎的选择。 ### 回答3: Python数据分析可视化是利用Python编程语言进行数据处理、分析和可视化的一种方法。Python以其简洁、易读且功能强大的特点,成为了数据科学领域的首选语言。 在Python中,有许多强大的数据处理和分析库,如NumPy、Pandas和SciPy。NumPy提供了高性能的多维数组对象,以及用于数组操作的工具。Pandas提供了数据结构和数据分析工具,简化了数据处理的流程。而SciPy则提供了许多科学计算和统计分析的功能。 Python可视化库也非常丰富,其中最著名的就是Matplotlib和Seaborn。Matplotlib提供了各种绘图功能,包括线图、散点图、柱状图等。Seaborn则提供了一些更高级的统计可视化工具,例如热力图和分类散点图。 除了以上提到的库,还有一些其他数据分析可视化工具,如Scikit-learn用于机器学习、iPython用于交互式计算和Jupyter Notebook用于数据报告等。 Python数据分析可视化的主要步骤包括数据收集与清洗、数据处理与分析、数据可视化以及结果报告。通过Python的强大库和工具,可以用较少的代码完成复杂的数据分析可视化任务,从而更好地理解和展示数据。 总而言之,Python数据分析可视化是一种用Python进行数据处理、分析和可视化的方法。通过使用各种强大的库和工具,可以轻松地进行数据分析可视化,并从中获得有价值的信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值