全网最全的平行坐标图(parallel coordinates plot)的绘制攻略

本文讨论了如何在Python、Matlab、Origin等工具中绘制平行坐标图,作者分享了解决现有库问题、使用Matlab在线工具、以及找到更满意GitHub解决方案的过程,最终实现了更美观的图形用于论文展示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

早上起来拥抱太阳,写小论文,看到人家的图怎么那么好看!!??
在这里插入图片描述
这不得赶紧抄下来,我也发一个顶刊?于是开始思考如何解决绘制这个问题,目前现有的大部分解决方案都是直接调库,查了一下现有的所有解决方案,

1.直接python调库

这篇文章直接调库,但是没有分类,而且也感觉不太好看
在这里插入图片描述

https://www.zhihu.com/question/571887313

这一个是调pandas库的,虽然有分类但是他的轴不能归一化调整。
在这里插入图片描述

https://www.cnblogs.com/caiyishuai/p/12322671.html

2.matlab

matlab作为强大的科研工具是众所周知的,他也提供了一个库来专门绘制平行坐标图。但是由于电脑内存不够,我就直接用线上matlab。经过学习之后,绘制出来这样的图,emmm老实说有点丑,但是指不定有人需要这个呢?
在这里插入图片描述

tbl = readtable('tt.csv');
head(tbl);
tbl.Name = categorical(tbl.Name);
p = parallelplot(tbl);
p.GroupVariable = 'Name';
p.CoordinateVariables = [3 2 4];
p.LineWidth = 1.5;
p.FontSize = 25;
p.Color = {'#B4FF00','#00E68C','#1432FA','#B4C8FA','#FF3232'}
%p.Color = {'#780001','#C11221','#FEF0D5','#002F49','#669BBB'}

其中csv的格式大概是这样的

cost time energy Name
0 2 20 GMPSO
0 8 90 KAMSA
6 5 30 COSA

太丑了还是下一个

3.用Origin绘制

Origin不愧是专业的绘图工具,绘制出来的图确实还不错。这里也是因为电脑内存原因所以我就没试着用Origin了。贴个参考文献:

https://cloud.tencent.com/developer/article/1623006?areaSource=102001.5&traceId=e-JyHo2xQfKU1fPJYmtbA

在这里插入图片描述

4.用高手做的轮子

上面尽管提供了三种方案,但是感觉也不能绘制出我想要的图形。于是乎我就上github寻找,肯定有大神。这个大神是我目前找到最满意的解决方案了。

https://github.com/jraine/parallel-coordinates-plot-dataframe

这个仓库提供了一个不错的解决方案,他能绘制出好看的平行坐标图,而且也不用引太多的库。

在这里插入图片描述
照着这个代码魔改了一下,我就绘制出来这样的图形了
在这里插入图片描述
这不比上面的图要好看?我就是天才啊哈哈哈,现在先问问老师我最后一格要不要换成图例,不用的话论文就贴这个图了。下面是魔改后的代码:

import matplotlib
from matplotlib import ticker
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from scipy.interpolate import make_interp_spline


def read_and_add_method(file_path, method_name):
    df = pd.read_csv(file_path)
    if method_name == 'ChaoticOSA':
        method_name = 'COSA'
    if method_name == 'WDNMN':
        method_name = 'WDNS'
    df['method'] = method_name  # 添加新列记录算法名
    return df

def parallel_plot(df,cols,rank_attr,cmap='Spectral',spread=False,curved=0.1,curvedextend=0.05):
    '''Produce a parallel coordinates plot from pandas dataframe with line colour with respect to a column.
    Required Arguments:
        df: dataframe
        cols: columns to use for axes
        rank_attr: attribute to use for ranking
    Options:
        cmap: Colour palette to use for ranking of lines
        spread: Spread to use to separate lines at categorical values
        curved: Spline interpolation along lines
        curvedextend: Fraction extension in y axis, adjust to contain curvature
    Returns:
        x coordinates for axes, y coordinates of all lines'''
    colmap = matplotlib.cm.get_cmap(cmap)
    cols = cols + [rank_attr]

    fig, axes = plt.subplots(1, len(cols)-1, sharey=False, figsize=(3*len(cols)+3,5))#绘制三个子图
    valmat = np.ndarray(shape=(len(cols),len(df)))#定义需要绘制曲线的数组有df行,cols列
    x = np.arange(0,len(cols),1)#貌似没什么用,有3列那么x=[0,1,2]
    ax_info = {}
    for i,col in enumerate(cols):#归一化数据
        vals = df[col]
        if (vals.dtype == float) & (len(np.unique(vals)) > 20):
            minval = np.min(vals)
            maxval = np.max(vals)
            rangeval = maxval - minval#区间长度
            vals = np.true_divide(vals - minval, maxval-minval)#归一化处理vals-minval/maxval-minval除法运算
            nticks = 5
            tick_labels = [round(minval + i*(rangeval/nticks),4) for i in range(nticks+1)]
            ticks = [0 + i*(1.0/nticks) for i in range(nticks+1)]
            valmat[i] = vals
            ax_info[col] = [tick_labels,ticks]
        else:
            vals = vals.astype('category')#假如是目录型
            cats = vals.cat.categories
            c_vals = vals.cat.codes
            minval = 0
            maxval = len(cats)-1
            if maxval == 0:
                c_vals = 0.5
            else:
                c_vals = np.true_divide(c_vals - minval, maxval-minval)
            tick_labels = cats
            ticks = np.unique(c_vals)
            ax_info[col] = [tick_labels,ticks]
            if spread is not None:
                offset = np.arange(-1,1,2./(len(c_vals)))*2e-2
                np.random.shuffle(offset)
                c_vals = c_vals + offset
            valmat[i] = c_vals
            
    extendfrac = curvedextend if curved else 0.05  
    for i,ax in enumerate(axes):
        for idx in range(valmat.shape[-1]):
            if curved:
                x_new = np.linspace(0, len(x), len(x)*20)
                a_BSpline = make_interp_spline(x, valmat[:,idx],k=3,bc_type='clamped')
                y_new = a_BSpline(x_new)
                ax.plot(x_new,y_new,color=colmap(valmat[-1,idx]),alpha=0.5)
            else:
                ax.plot(x,valmat[:,idx],color=colmap(valmat[-1,idx]),alpha=0.5)
        ax.set_ylim(0-extendfrac,1+extendfrac)
        ax.set_xlim(i,i+1)
    
    for dim, (ax,col) in enumerate(zip(axes,cols)):
        ax.xaxis.set_major_locator(ticker.FixedLocator([dim]))
        ax.yaxis.set_major_locator(ticker.FixedLocator(ax_info[col][1]))
        ax_info[col][0] = [int(label) for label in ax_info[col][0]]#y标签下取整
        ax.set_yticklabels(ax_info[col][0])
        ax.set_xticklabels([cols[dim]])
    
    
    plt.subplots_adjust(wspace=0)
    norm = matplotlib.colors.Normalize(0,1)#*axes[-1].get_ylim())
    sm = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
    cbar = plt.colorbar(sm,pad=0,ticks=ax_info[rank_attr][1],extend='both',extendrect=True,extendfrac=extendfrac)
    #if curved:
        #cbar.ax.set_ylim(0-curvedextend,1+curvedextend)
    cbar.ax.set_yticklabels(ax_info[rank_attr][0])
    cbar.ax.set_xlabel(rank_attr)
    plt.show()
            
    return x,valmat

method_names = ['GALCS','GMPSO',"ChaoticOSA","KAMSA","WDNMN"]
data_size = 30
data_index = 50
data_set_name = 'CyberShake'

# 存储所有DataFrame的列表
all_dataframes = []

# 遍历目录下所有的CSV文件
for method_name in method_names:
    fileName = 'D://demo//dataset/5.0-5.0/'+str(data_size)+'/'+str(data_size)+data_set_name+str(data_index)+method_name+'_0.csv'
    df = read_and_add_method(fileName, method_name)
    # 将DataFrame添加到列表中
    all_dataframes.append(df)

# 将所有的DataFrame拼接在一起
final_dataframe = pd.concat(all_dataframes, ignore_index=True)
print(final_dataframe)

parallel_plot(final_dataframe,['time','cost','energy'],'method')
# 定义函数,读取CSV文件并添加一个新列'method'

解决了一个问题咯,拜拜咯

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值