【目录】
transforms方法操作
transforms—图像变换
自定义transforms方法
1、transforms方法操作
-
Pad
-
ColorJitter
亮度:>1会更亮一些
对比度:>1会更硬朗一些,白的地方更白,黑的地方更黑
饱和度:>1会更鲜艳一些
色相:会更改图像的色彩
-
Grayscale、RandomGrayscale
-
RandomAffine
仿射变换(旋转、平移、缩放、错切和翻转)
右二X轴错切、右三Y轴错切
-
RandomErasing
- 功能:对图像进行随机遮挡
- p:概率值,执行该操作的概率
- scale:遮挡区域的面积
- ratio:遮挡区域长宽比
- value:设置遮挡区域的像素值
随机遮挡是对张量进行操作,之前的是直接对image图像进行操作
宽比长、长比宽一般设置为3倍左右(0.33,3.33)不然会丢失一些像素
scale即随机遮挡的面积一般设置为(0.02,0.33)
value为遮挡的图像的颜色,设置为"random"即为彩色填充
-
匿名方法(常用于对数据类型进行调整)
由于TenCrop返回的是十张tuple的形式
而transforms的输入通常是一个PIL image或一个Tensor形式,因此要对输出进行变换将其拼接成一个tensor形式
crops是一个长度为10的tuple,tuple中的每一个元素是一个PIL image
利用torch.stack对张量进行拼接,张量放在一个list中,
通过列表解析提取出元组中的每一个元素,transforms.toTensor()将其变成张量
2、transforms—图像变换组合
3、自定义transform方法
注意上下游的输入与输出,本层的输入来自上层的输出,本层的输出来自上层的输入
通过类传入多参数,在_ _init_ _()初始化中
以椒盐噪声为例
信噪比为图像像素(信号)在整张图片中的占比,随着信噪比的下降,图像越来越模糊
snr为信噪比,p为概率值(根据一定概率决定是否使用椒盐噪声)
自定义transforms——椒盐噪声