Week2:[任务二] 第二节 transforms图像增强(二)

【目录】

  • transforms方法操作

  • transforms—图像变换

  • 自定义transforms方法

1、transforms方法操作

  • Pad

  • ColorJitter

亮度:>1会更亮一些

对比度:>1会更硬朗一些,白的地方更白,黑的地方更黑

饱和度:>1会更鲜艳一些

色相:会更改图像的色彩

  • Grayscale、RandomGrayscale

  •  RandomAffine

     仿射变换(旋转、平移、缩放、错切和翻转)

右二X轴错切、右三Y轴错切

  • RandomErasing

  • 功能:对图像进行随机遮挡
  • p:概率值,执行该操作的概率
  • scale:遮挡区域的面积
  • ratio:遮挡区域长宽比
  • value:设置遮挡区域的像素值

随机遮挡是对张量进行操作,之前的是直接对image图像进行操作

宽比长、长比宽一般设置为3倍左右(0.33,3.33)不然会丢失一些像素

scale即随机遮挡的面积一般设置为(0.02,0.33)

value为遮挡的图像的颜色,设置为"random"即为彩色填充

  • 匿名方法(常用于对数据类型进行调整)

由于TenCrop返回的是十张tuple的形式

而transforms的输入通常是一个PIL image或一个Tensor形式,因此要对输出进行变换将其拼接成一个tensor形式

crops是一个长度为10的tuple,tuple中的每一个元素是一个PIL image

利用torch.stack对张量进行拼接,张量放在一个list中,

通过列表解析提取出元组中的每一个元素,transforms.toTensor()将其变成张量

2、transforms—图像变换组合

3、自定义transform方法

注意上下游的输入与输出,本层的输入来自上层的输出,本层的输出来自上层的输入

通过类传入多参数,在_ _init_ _()初始化中

 以椒盐噪声为例

信噪比为图像像素(信号)在整张图片中的占比,随着信噪比的下降,图像越来越模糊

snr为信噪比,p为概率值(根据一定概率决定是否使用椒盐噪声)

自定义transforms——椒盐噪声

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值