Java8新特性:Stream API
目录
一 什么是Stream
Stream 是 Java8 中处理集合的关键抽象概念,它可以指定你希望对集合进行的操作,可以执行非常复杂的查找、过滤和映射数据等操作。简而言之,Stream API 提供了一种高效且易于使用的处理数据的方式。
即Stream是数据渠道,用于操作数据源(集合、数组等)所生成的元素序列。
注意:
①Stream 自己不会存储元素。
②Stream 不会改变源对象。相反,他们会返回一个持有结果的新Stream。
③Stream 操作是延迟执行的。这意味着他们会等到需要结果的时候才执行。
二 Stream 的三个操作步骤:
1. 创建 Stream(4种方式)
由一个数据源(如:集合、数组)获取一个流
2. 中间操作(筛选与切片、映射、排序)
一个中间操作链,对数据源的数据进行处理
3.终止操作(也称为终端操作)
一个终止操作,执行中间操作链,并产生结果
三 创建Stream
3.1 创建Stream的四种方式
1) Collection 接口提供了 两个获取流的方法:stream()和parallelStream()方法
default Stream<E> stream() : 返回一个顺序流
default Stream<E> parallelStream() : 返回一个并行流
2) Arrays 的静态方法 stream() 可 以获取数组流:
static <T> Stream<T> stream(T[] array): 返回一个流
重载形式,能够处理对应基本类型的数组:
public static IntStream stream(int[] array)
public static LongStream stream(long[] array)
public static DoubleStream stream(double[] array)
3)可以使用Steram类的静态方法 Stream.of(), 通过显示值 创建一个流。它可以接收任意数量的参数。
public static<T> Stream<T> of(T... values) : 返回一个流
4)创建无限流:可以使用静态方法 Stream.iterate() 和 Stream.generate(), 创建无限流。
迭代
public static<T> Stream<T> iterate(final T seed, final UnaryOperator<T> f)
生成
public static<T> Stream<T> generate(Supplier<T> s) :
3.2 创建Stream的案例
//1. 创建 Stream(四种方式)
@Test
public void test1(){
//1. Collection 提供了两个方法 stream() 与 parallelStream()
List<String> list = new ArrayList<>();
Stream<String> stream = list.stream(); //获取一个顺序流
Stream<String> parallelStream = list.parallelStream(); //获取一个并行流
//2. 通过 Arrays 中的 stream() 获取一个数组流
Integer[] nums = new Integer[10];
Stream<Integer> stream1 = Arrays.stream(nums);
//3. 通过 Stream 类中静态方法 of()
Stream<Integer> stream2 = Stream.of(1,2,3,4,5,6);
//4. 创建无限流
//4.1 迭代
Stream<Integer> stream3 = Stream.iterate(0, (x) -> x + 2).limit(10);
stream3.forEach(System.out::println);
//4.2 生成
Stream<Double> stream4 = Stream.generate(Math::random).limit(2);
stream4.forEach(System.out::println);
}
四 中间操作
多个中间操作可以连接起来形成一个流水线,除非流水 线上触发终止操作,否则中间操作不会执行任何的处理! 而在终止操作时一次性全部处理,称为“惰性求值”。
4.1 中间操作一:筛选与切片
4.1.1 筛选与切片方法
4.1.2 筛选与切片案例:
//2. 中间操作
List<Employee> emps = Arrays.asList(
new Employee(102, "李四", 59, 6666.66),
new Employee(101, "张三", 18, 9999.99),
new Employee(103, "王五", 28, 3333.33),
new Employee(104, "赵六", 8, 7777.77),
new Employee(104, "赵六", 8, 7777.77),
new Employee(104, "赵六", 8, 7777.77),
new Employee(105, "田七", 38, 5555.55)
);
/*
筛选与切片
filter(Lambda)——接收 Lambda , 从流中排除某些元素。
limit(n)——截断流,使其元素不超过给定数量n。
skip(n) —— 跳过元素,返回一个扔掉了前 n 个元素的流。若流中元素不足 n 个,则返回一个空流。与 limit(n) 互补
distinct()——筛选,通过流所生成元素的 hashCode() 和 equals() 去除重复元素
*/
//filter(Predicate p)
//内部迭代:迭代操作 Stream API 内部完成
@Test
public void test2(){
//所有的中间操作不会做任何的处理
Stream<Employee> stream = emps.stream()
.filter((e) -> {
System.out.println("测试中间操作");
return e.getAge() <= 35;
});
//只有当做终止操作时,所有的中间操作会一次性的全部执行,称为“惰性求值”
stream.forEach(System.out::println);
}
//外部迭代
@Test
public void test3(){
Iterator<Employee> it = emps.iterator();
while(it.hasNext()){
System.out.println(it.next());
}
}
//limit(long maxSize)
@Test
public void test4(){
emps.stream()
.filter((e) -> {
System.out.println("短路!"); // && ||
return e.getSalary() >= 5000;
}).limit(3)
.forEach(System.out::println);
}
//skip(long n)
@Test
public void test5(){
emps.parallelStream()
.filter((e) -> e.getSalary() >= 5000)
.skip(2)
.forEach(System.out::println);
}
//distinct()
@Test
public void test6(){
emps.stream()
.distinct()
.forEach(System.out::println);
}
test2()和test3()是filter(Predicate p)内部迭代与Iterator外部迭代的对比。在test2()中,Stream API帮助我们完成了迭代,对集合emps内的元素逐一完成filter(Predicate p)内Lambda表达式中的内容(先输出“测试中间操作”后返回判断结果)。
4.2 中间操作二:映射
4.2.1 映射方法
4.2.2 映射案例:
public class TestStreamAPI1 {
List<Employee> emps = Arrays.asList(
new Employee(102, "李四", 59, 6666.66),
new Employee(101, "张三", 18, 9999.99),
new Employee(103, "王五", 28, 3333.33),
new Employee(104, "赵六", 8, 7777.77),
new Employee(104, "赵六", 8, 7777.77),
new Employee(104, "赵六", 8, 7777.77),
new Employee(105, "田七", 38, 5555.55)
);
//2. 中间操作
/*
映射
map——接收 Lambda , 将元素转换成其他形式或提取信息。接收一个函数作为参数,
该函数会被应用到每个元素上,并将其映射成一个新的元素。
flatMap——接收一个函数作为参数,将流中的每个值都换成另一个流,然后把所有流连接成一个流
*/
@Test
public void test1(){
Stream<String> str = emps.stream()
.map((e) -> e.getName());
System.out.println("-------------------------------------------");
List<String> strList = Arrays.asList("aaa", "bbb", "ccc", "ddd", "eee");
Stream<String> stream = strList.stream()
.map(String::toUpperCase);
stream.forEach(System.out::println);
//stream2:流中元素是流Stream<Character>,因为filterCharacter返回的是一个流
Stream<Stream<Character>> stream2 = strList.stream()
.map(TestStreamAPI1::filterCharacter);
//{{a,a,a},{b,b,b},{c,c,c},{d,d,d},{e,e,e}},filterCharacter返回的小流在大流中
stream2.forEach((sm) -> {
sm.forEach(System.out::println);
});
System.out.println("---------------------------------------------");
//flatMap将filterCharacter返回的所有流连接成了一个流,可以理解为
//将filterCharacter返回的流中元素取出来放到流stream3中
Stream<Character> stream3 = strList.stream()
.flatMap(TestStreamAPI1::filterCharacter);
//{a,a,a,b,b,b,c,c,c,d,d,d,e,e,e},将filterCharacter返回的小流连接成大流
stream3.forEach(System.out::println);
}
public static Stream<Character> filterCharacter(String str){
List<Character> list = new ArrayList<>();
for (Character ch : str.toCharArray()) {
list.add(ch);
}
return list.stream();
}
}
注意区别test1()中的stream2和stream3; 对于map(Function f) 是通过函数将流中每一个素映射成一个新的元素,而filterCharacter函数是将传进去的String中的每个字符添加到List中,并通过集合返回流,所以stream2中的元素是流Stream<Character>(得到的结果为{{a,a,a},{b,b,b},{c,c,c},{d,d,d},{e,e,e}});对于flatMap(Function f) 接收一个函数作为参数,将流中的每个值都换成另 一个流,然后把所有流连接成一个流,其将filterCharacter返回的所有流连接成了一个流,可以理解为将filterCharacter返回的流中元素取出来放到流stream3中(得到的结果为{a,a,a,b,b,b,c,c,c,d,d,d,e,e,e})。
map(Function f)和flatMap(Function f)的区别可以类比于集合的add(Object obj)和addAll(Collection coll)两个方法的区别,假设add方法传进去的参数是一个集合,意味着形参集合被添加进调用方法的集合中(当前集合),而addAll方法会将传进去的集合中的每一个元素添加到当前集合中。
4.3 中间操作三:排序
4.3.1 排序方法
4.3.2 排序案例:
//2. 中间操作
/*
排序
sorted()——自然排序(Comparable中的comparaTo方法)
sorted(Comparator com)——定制排序
*/
@Test
public void test2(){
emps.stream()
.map(Employee::getName)
.sorted()//自然排序:String实现了Comparable接口并重写了comparaTo方法
.forEach(System.out::println);
System.out.println("------------------------------------");
emps.stream()
.sorted((x, y) -> {
if(x.getAge() == y.getAge()){
return x.getName().compareTo(y.getName());
}else{
return Integer.compare(x.getAge(), y.getAge());
}
}).forEach(System.out::println);
}
对于定制排序,需要使用Lambda表达式取代Comparator函数式接口的匿名内部实现类重写compare方法。
五 终止操作
5.1 终止操作一:查找与匹配
5.1.1 查找与匹配方法
5.1.2 查找与匹配案例
//3. 终止操作
/*
查找与匹配
allMatch——检查是否匹配所有元素
anyMatch——检查是否至少匹配一个元素
noneMatch——检查是否没有匹配的元素
findFirst——返回第一个元素
findAny——返回当前流中的任意元素
count——返回流中元素的总个数
max——返回流中最大值
min——返回流中最小值
*/
@Test
public void test1(){
//allMatch(Predicate p)
boolean bl = emps.stream()
.allMatch((e) -> e.getStatus().equals(Status.BUSY));
System.out.println(bl);
//anyMatch(Predicate p)
boolean bl1 = emps.stream()
.anyMatch((e) -> e.getStatus().equals(Status.BUSY));
System.out.println(bl1);
//noneMatch(Predicate p)
boolean bl2 = emps.stream()
.noneMatch((e) -> e.getStatus().equals(Status.BUSY));
System.out.println(bl2);
}
@Test
public void test2(){
//findFirst()
//Optional可以避免空指针异常,最终的结果有可能为空时,将这样的结果封装到Optional
Optional<Employee> op = emps.stream()
.sorted((e1, e2) -> -Double.compare(e1.getSalary(), e2.getSalary()))//默认从小到大排序,加负号后从大到小排
.findFirst();
System.out.println(op.get());
System.out.println("--------------------------------");
//findAny()
//Optional可以避免空指针异常
Optional<Employee> op2 = emps.parallelStream()//并行流:多个线程同事去找状态为FREE的;串行流:一个线程挨个找
.filter((e) -> e.getStatus().equals(Status.FREE))
.findAny();
System.out.println(op2.get());
}
@Test
public void test3(){
//count()
long count = emps.stream()
.filter((e) -> e.getStatus().equals(Status.FREE))
.count();
System.out.println(count);
//max(Comparator c):获取工资最大的员工的工资
Optional<Double> op = emps.stream()
.map(Employee::getSalary)
.max(Double::compare);
System.out.println(op.get());
//min(Comparator c) :获取工资最小的员工
Optional<Employee> op2 = emps.stream()
.min((e1, e2) -> Double.compare(e1.getSalary(), e2.getSalary()));
//.min(Double::compare());
System.out.println(op2.get());
}
//注意:流进行了终止操作后,不能再次使用
@Test
public void test4(){
Stream<Employee> stream = emps.stream()
.filter((e) -> e.getStatus().equals(Status.FREE));
long count = stream.count();
stream.map(Employee::getSalary)
.max(Double::compare);
}
5.2 终止操作二:规约
5.2.1 规约方法
5.2.2 规约案例
这里会用到Employee类(之前的博客都用的该pojo类),与之前不同的是,Employee新增了一个属性staus,具体代码如下:
public class Employee {
private int id;
private String name;
private int age;
private double salary;
private Status status;
//空参,全参构造器
//getter,setter方法
//重写hashcode(),equals(),toString()方法
//...
public enum Status {
FREE, BUSY, VOCATION;
}
}
//3. 终止操作
/*
归约
reduce(T identity, BinaryOperator) / reduce(BinaryOperator) ——可以将流中元素反复结合起来,得到一个值。
(BinaryOperator:二元运算)
*/
@Test
public void test1(){
//对数组内元素求和
List<Integer> list = Arrays.asList(1,2,3,4,5,6,7,8,9,10);
Integer sum = list.stream()
.reduce(0, (x, y) -> x + y);
//reduce(T identity, BinaryOperator):identity相当于起始值,所以规约后不会为空,由Interger进行接收
System.out.println(sum);
System.out.println("----------------------------------------");
//得到员工工资的总和
Optional<Double> op = emps.stream()
.map(Employee::getSalary)
.reduce(Double::sum);
//reduce(BinaryOperator):没有起始值,规约后有可能为空,由Optional进行接收
System.out.println(op.get());
}
//需求:搜索名字中 “六” 出现的次数
@Test
public void test2(){
Optional<Integer> sum = emps.stream()
.map(Employee::getName)
.flatMap(TestStreamAPI1::filterCharacter)
.map((ch) -> {
if(ch.equals('六'))
return 1;
else
return 0;
}).reduce(Integer::sum);
System.out.println(sum.get());
}
5.3 终止操作三:收集
5.3.1 收集方法
收集虽然只有一个方法collect(Collector c) ,但其功能非常强大,对于其中的参数Collector可以借助工具类Collectors(类似于线程池工具类Executors)传入。
具体方法:
5.3.2 收集案例
//3. 终止操作
/*
收集
collect(Collector c):将流转换为其他形式。接收一个 Collector接口的实现,用于给Stream中元素做汇总的方法
Collector 接口中方法的实现决定了如何对流执行收集操作(如收集到 List、Set、Map)。但是 Collectors 实用类
提供了很多静态方法,可以方便地创建常见收集器实例
*/
//collect——将流转换为其他形式。接收一个 Collector接口的实现,用于给Stream中元素做汇总的方法
@Test
public void test3(){
//收集到List
//如果不使用stream,需要遍历emps,逐个getName后,添加到List
List<String> list = emps.stream()
.map(Employee::getName)
.collect(Collectors.toList());
list.forEach(System.out::println);
System.out.println("----------------------------------");
//收集到Set(去重)
Set<String> set = emps.stream()
.map(Employee::getName)
.collect(Collectors.toSet());//List,Set,Map,ConcurrentMap类直接to
set.forEach(System.out::println);
System.out.println("----------------------------------");
//收集到HashSet
HashSet<String> hs = emps.stream()
.map(Employee::getName)
.collect(Collectors.toCollection(HashSet::new));//toCollection(Supplier<C> collectionFactory)
//List,Set,Map,ConcurrentMap类直接to,其他集合需要toCollection(其他集合::new)后重新造
hs.forEach(System.out::println);
}
@Test
public void test4(){
//获取工资的最大值(返回工资)
Optional<Double> max = emps.stream()
.map(Employee::getSalary)
.collect(Collectors.maxBy(Double::compare));
System.out.println(max.get());
//获取工资最小的员工(返回员工)
Optional<Employee> op = emps.stream()
.collect(Collectors.minBy((e1, e2) -> Double.compare(e1.getSalary(), e2.getSalary())));
System.out.println(op.get());
//获取员工工资的总和
Double sum = emps.stream()
.collect(Collectors.summingDouble(Employee::getSalary));
System.out.println(sum);
//获取员工工资的平均值
Double avg = emps.stream()
.collect(Collectors.averagingDouble(Employee::getSalary));
System.out.println(avg);
获取员工数量
Long count = emps.stream()
.collect(Collectors.counting());
System.out.println(count);
System.out.println("--------------------------------------------");
//得到最大值,最小值,平均值等的另一种方式
DoubleSummaryStatistics dss = emps.stream()
.collect(Collectors.summarizingDouble(Employee::getSalary));
System.out.println(dss.getMax());
System.out.println(dss.getMin());
System.out.println(dss.getAverage());
System.out.println(dss.getSum());
}
//分组
@Test
public void test5(){
//按员工状态分组(注意:分组后的返回值应该是一个Map,key是Status,value是List<Employee>)
Map<Status, List<Employee>> map = emps.stream()
.collect(Collectors.groupingBy(Employee::getStatus));
System.out.println(map);
//遍历输出
for(Map.Entry entry:map.entrySet()){
System.out.println(entry.getKey()+"--->"+entry.getValue());
}
}
//多级分组
@Test
public void test6(){
//先按状态分组,再按年龄分组(注意:分组后的返回值是一个Map,key是Status,value是Map<String, List<Employee>>)
Map<Status, Map<String, List<Employee>>> map = emps.stream()
.collect(Collectors.groupingBy(Employee::getStatus, Collectors.groupingBy((e) -> {
if(e.getAge() >= 60)
return "老年";
else if(e.getAge() >= 35)
return "中年";
else
return "成年";
})));
System.out.println(map);
//遍历输出
for(Map.Entry entry:map.entrySet()) {
Map<String, List<Employee>> map1 = (Map<String, List<Employee>>) entry.getValue();
for (Map.Entry entry1 : map1.entrySet()) {
System.out.println(entry.getKey() + "={" + entry1.getKey() + "=" + entry1.getValue()+"}");
}
}
}
//分区
@Test
public void test7(){
//安工资是否大于等于5000分为两个区
Map<Boolean, List<Employee>> map = emps.stream()
.collect(Collectors.partitioningBy((e) -> e.getSalary() >= 5000));
System.out.println(map);
}
//
@Test
public void test8(){
//将员工姓名连接在一起,用逗号隔开(会自动去掉第一个和最后一个的逗号),并在首尾添加(----)
String str = emps.stream()
.map(Employee::getName)
.collect(Collectors.joining("," , "----", "----"));
System.out.println(str);
}
@Test
public void test9(){
Optional<Double> sum = emps.stream()
.map(Employee::getSalary)
.collect(Collectors.reducing(Double::sum));
System.out.println(sum.get());
}