单变量线性回归

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


前言

一开始学习AI会有些迷茫,因为体系非常庞大,没关系,道虽远不行不至。直接开干。

一、模型描述

单变量线性回归
在这里插入图片描述目标就是得到h(x),hypothesis这个叫法是一个历史遗留问题,虽然不是很恰当,但亦可理解。

二、代价函数

吴恩达课件内容:
在这里插入图片描述

代价函数也被称为平方误差函数,有时也被称为平方误差代价函数
J ( θ 0 , θ 1 ) = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) J\left(\theta_{0}, \theta_{1}\right)=\frac{1}{2 m} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right) J(θ0,θ1)=2m1i=1m(hθ(x(i))y(i))
其中 x i x^{i} xi y i y^{i} yi表示第i组训练样本,m为训练样本数量
平方误差代价函数是解决回归问题最常用的手段
在这里插入图片描述

代价函数(一)

首先是默认将常数项设为0,这时可以看到当 θ 1 \theta_{1} θ1为1的时候代价函数取到最小值
在这里插入图片描述

代价函数(二)

θ 0 \theta_{0} θ0 θ 1 \theta_{1} θ1都在变化的时候代价函数呈现出来的如下所示
在这里插入图片描述

三、梯度下降

想象一下一种方法,通过不断的改变 θ i \theta_{i} θi来获得代价函数的最小值(可能是局部最优)。
这里引入吴恩达的方法,想象站在一个山坡上,环顾四周,找一个最快下山的路。
在这里插入图片描述
没错,就是最大方向导数,也就是梯度,吴恩达以两个参数为例的梯度下降算法:
θ j : = θ j − α ∂ ∂ θ j J ( θ 0 , θ 1 ) \theta_{j}:=\theta_{j}-\alpha \frac{\partial}{\partial \theta_{j}} J\left(\theta_{0}, \theta_{1}\right) θj:=θjαθjJ(θ0,θ1)
α \alpha α被我们称为学习率(learning rate)
这里有一个注意事项 θ i \theta_{i} θi对应的每一个参数都需要同时更新,以确保这是梯度下降算法的实现,否则可能成为了别的什么场合下的算法。

四、梯度下降知识点总结

假如代价函数仅有一个参数,这时候如何理解梯度下降算法?
在这里插入图片描述可以看到,确实通过这个算法,可以使得代价函数不断逼近最小值

有关 α \alpha α

在这里插入图片描述

梯度下降算法更新到局部最优点,具备保持

如果初始化就在最优位置:
在这里插入图片描述这也解释了,为什么即使不改变学习率 α \alpha α,最终代价函数也能收敛到局部最低点的原因。
因为随着梯度下降,导数项会越来越小。
在这里插入图片描述

五、线性回归的梯度下降

总结

今天主要是学习的线性回归模型,以及对应这个模型的代价函数——平方误差代价函数,难度不是很高,很快上手吧。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值