pecerptron:感知机
其实深度学习很简单 ,只需要三步骤:
第一步:定义一个函数也就是 Neural Network(神经网络)
应该怎么将每个Neuron 怎么连接:
有各种连接方式,基本都是手动设置,最常见的为Fully Connect Feedforward Network
Deep = Many hidden layers 但是多少可以被称为Deep,各说纷纭
神经网络是通过矩阵来操作的
矩阵运算GPU运算更快
老师这里举了一个例子:识别一个数字的手写,效果的好坏,对应不同的function set,Neuron和layer的数量多少才是最合适的?
一些问题:
上图第一个问题:
deep learning 在语音辨识领域似乎效果不错,但是在NLP中进步相较于传统的方法没有那么多进步。
第二个问题:
能否自动定义函数的结构,答案是可以,但是目前应用并不多
第三个问题:
我们能够按照自己的想法把hidden layers中的不同neuron连接起来,有很多种方法,其中马上要讲到的就是CNN(卷积神经网络)
第二步:定义一个function的好坏
也就是Loss函数的定义,以下李老师使用了交叉熵定义了Loss函数
第三步:也就是找一个function 能够使Loss函数值最小
,方法:梯度下降
反向传播:一个有效的方式来算微分