【22李宏毅机器学习】第一节 深度学习简介——额外学习

pecerptron:感知机
在这里插入图片描述
其实深度学习很简单 ,只需要三步骤:
在这里插入图片描述

第一步:定义一个函数也就是 Neural Network(神经网络)

在这里插入图片描述
应该怎么将每个Neuron 怎么连接:
有各种连接方式,基本都是手动设置,最常见的为Fully Connect Feedforward Network
在这里插入图片描述
在这里插入图片描述
Deep = Many hidden layers 但是多少可以被称为Deep,各说纷纭
神经网络是通过矩阵来操作的
在这里插入图片描述矩阵运算GPU运算更快
老师这里举了一个例子:识别一个数字的手写,效果的好坏,对应不同的function set,Neuron和layer的数量多少才是最合适的?
9090909090909090909090909090909090909090909090909090909090909090909090909090一些问题:
在这里插入图片描述

上图第一个问题:
deep learning 在语音辨识领域似乎效果不错,但是在NLP中进步相较于传统的方法没有那么多进步。
第二个问题:
能否自动定义函数的结构,答案是可以,但是目前应用并不多
第三个问题:
我们能够按照自己的想法把hidden layers中的不同neuron连接起来,有很多种方法,其中马上要讲到的就是CNN(卷积神经网络)

第二步:定义一个function的好坏

也就是Loss函数的定义,以下李老师使用了交叉熵定义了Loss函数
在这里插入图片描述
在这里插入图片描述

第三步:也就是找一个function 能够使Loss函数值最小

,方法:梯度下降
在这里插入图片描述
反向传播:一个有效的方式来算微分
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值