题干:
给你n个数,分别为1,2,3,4…n。
让你拿走其中y个数,使剩下的n-y个数不能组成三角形。
求最小的y。
思路:
因为给的n很小,所以也可以手算然后扔数组里。
根据三角形的定义,任意两边之和大于第三边,任意两边之差小于第三边。
所以就是要使剩下的数能组成一个斐波那契数列(即f[n]=f[n-1]+f[n-2])
即1 2 3 5 8 13 21 …
暴力出当前n会产生多少个这样的数,然后n减去他就行。
特判一下n=1或2或3的时候。
#include<cstring>
#include<cstdio>
#include<iostream>
#include<queue>
#include <set>
#include <cmath>
#include <algorithm>
using namespace std;
int x[30];
int main()
{
int t,n;
scanf("%d",&t);
for(int i=0;i<t;i++){
scanf("%d",&n);
int a=2,b=3,ans=3,c;
while(b<=n)
{
c=a+b;
a=b;
b=c;
ans+=1;
}
if(n>4)
printf("Case #%d: %d\n",i+1,n-ans+1
);
else if(n==4)
printf("Case #%d: 1\n",i+1);
else
printf("Case #%d: 0\n",i+1);
}
return 0;
}