原理
之前写过对于频率已经知道的微弱信号是如何检测的,但是我们实际上大部分都是对于位置信号的检测。上一篇文章中说过对于已知信号的检测要求我们知道信号的频率,然后根据混沌系统的相变来获取频率的幅值。然而,这边文章将介绍对于频率未知的信号进行检测。
Duffing系统在处于混沌态和周期态两种状态下,系统输出信号的方差值的大小会随着策动力频率值的改变而进行改变,主要有一下规律:
1.当内置周期策动力的频率与待测信号的频率一致时,系统输出信号的方差达到最大值或极大值。
2.当策动力的频率与待测信号的频率不一致的时候,输出信号的方差小于两者频率一直时的方差值。
综上两条,我们可以得出只有内置策动力与待测信号频率一致的时候,方差才会达到最大值。此时,方差峰值处所对应的频率值就是待测信号的频率。
我们使用内置策动力对频率未知的单频和多频信号进行估计,当策动力频率与待测微弱特征信号的频率一样的时候,方差值会达到最大值。当检测单频的时候会出现一个峰值,当检测多频的时候会出现多个峰值。如下图所示:
在实际的生活中,地震勘探的信号都不是单一的频率信号,他们都是多频复杂的混合信号。
这个时候我们可以设置待检测信号为:
x
(
t
)
=
∑
i
=
1
p
a
i
c
o
s
(
w
i
t
)
x(t) = \sum_{i=1}^pa_icos(w_it)
x(t)=i=1∑paicos(wit)
我们进行检测的步骤为:
①:首先对待测信号
x
(
t
)
x(t)
x(t)进行功率谱分析,估计出大致的范围。我们可以得到估计的各个频率为
w
1
,
w
2
,
w
3
,
…
,
w
p
w_1,w_2,w_3,\dots,w_p
w1,w2,w3,…,wp
②:设置策动力频率的变化范围,满足:
w
00
<
w
m
i
n
<
⋯
<
w
m
a
x
<
w
0
m
w_{00}<w_{min}<\dots<w_{max}<w_{0m}
w00<wmin<⋯<wmax<w0m
其中,
w
m
i
n
=
m
i
n
{
w
1
,
w
2
,
w
3
,
…
,
w
p
}
,
w
m
a
x
=
m
a
x
{
w
1
,
w
2
,
w
3
,
…
,
w
p
}
w_{min}=min\{w_1,w_2,w_3,\dots,w_p\},w_{max}=max\{w_1,w_2,w_3,\dots,w_p\}
wmin=min{w1,w2,w3,…,wp},wmax=max{w1,w2,w3,…,wp},
w
00
w_{00}
w00为策动力频率的初始值,
w
0
m
w_{0m}
w0m为策动力频率的上限值。
③:调节系统的内置周期周期策动力的幅值
γ
\gamma
γ,使系统处于稳定周期状态。
④:加入待测信号
x
(
t
)
x(t)
x(t),使得策动里的频率为初始频率
w
0
=
w
00
w_0=w_{00}
w0=w00
⑤:编写程序自动搜索最大的方差:选择步长d来调节策动力的频率值,使策动力的频率从
w
00
w_{00}
w00到
w
0
w
w_{0w}
w0w.
根据以上得到
w
00
,
w
01
,
w
02
,
…
,
w
0
m
w_{00},w_{01},w_{02},\dots,w_{0m}
w00,w01,w02,…,w0m对应的各自的方差为
V
00
,
V
01
,
V
02
,
…
,
V
0
m
V_{00},V_{01},V_{02},\dots,V_{0m}
V00,V01,V02,…,V0m。计算方差出现极值的地方,对应的出现极值的地方的频率就是待测信号里各个分量的频率。
⑥:得出信号的频率以后,我们使用之前了解的已知信号求幅值的办法就可以求出各个频率的幅值。