实用的行列式计算方法 —— 线性代数(det)

线代基础建议去看看李永乐老师讲的,我这里只是把李永乐老师的笔记做了个总结(因为很实用很详细了)
其实有很多概念我没写,我写的仅仅是对解题实战有帮助的内容
关于矩阵的算法:<点这里>

补充:

  • 非方阵是不能求行列式的,也不能求逆
  • 一个n阶行列式就是一个n次多项式;若行列式内含有未知数,这个多项式就会变成一个n次方程

一、行列式的概念

1.1 二、三阶行列式

在这里插入图片描述
三阶的我在概念里面补充

1.2 排列、逆序、逆序数

在这里插入图片描述
定理.对换改变列的奇偶性

任意一个n阶排列可经过一系列兑换变成自然排列
在这里插入图片描述
定理.在全部n阶排列中,奇偶排列各占一半

1.3 n阶行列式的概念

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

二、行列式的性质(行列同理)

在这里插入图片描述
我们用第四个性质来举个栗子
蓝色部分满足性质3
在这里插入图片描述

经典例题

在这里插入图片描述

三、行列式按行(列)展开公式

取0最多的一行或一列来展开求解
在这里插入图片描述

3.1 代数余子式

在这里插入图片描述

定理

在这里插入图片描述

3.2 展开公式

下面两种行列式求解公式是超级常用的公式,一定要记住

3.2.1 范德蒙德行列式

在这里插入图片描述

相关例题

在这里插入图片描述

3.2.2 拉普拉斯行列式

在这里插入图片描述

相关例题

在这里插入图片描述

四、克拉默法则

具体解的部分会在写方程组的时候详细叙述,这里只是把与行列式有关的先提一下
在这里插入图片描述

eigen库中的行列式计算是基于矩阵的LU分解的。在LU分解中,一个矩阵A被分解为A=P^(-1)LUQ^(-1),其中L是下三角矩阵,U是上三角矩阵,P和Q是置换矩阵。行列式计算可以通过将L和U的对角线元素相乘得到,即det(A) = det(L) * det(U)。在LU分解中,U的对角线元素是矩阵A的主对角线元素,而L的对角线元素都是1。因此,det(A)等于矩阵A的主对角线元素的乘积。 需要注意的是,eigen库中的determinant()函数只能用于浮点数类型的矩阵,如果矩阵的类型是整数,会导致报错。另外,eigen库还提供了其他的矩阵分解方法,如LU分解和QR分解,可以用于求解矩阵的行列式以及其他的线性代数问题。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [矩阵库eigen的用法()————求行列式值和三角分解求线性方程组的解](https://blog.csdn.net/l93919861/article/details/86557974)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *3* [Eigen 简单矩阵运算](https://blog.csdn.net/gwh1010/article/details/105205707)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 27
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

果子当夜宵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值