文章目录
- 1 行列式
- 2 矩阵
- 3 齐次线性方程组
- 4 非齐次线性方程组
- 5 公共解问题
- 6 同解问题
- 7 抽象型方程组
- 8 向量空间
- 9 特征值特征向量
- 10 相似
- 11 实对称矩阵(必能相似对角化)
- 12 正交矩阵
- 13 二次型
- 14 合同
- 15 正定二次型(正定矩阵)
- 16 反对称矩阵
1 行列式
1.1 克拉默法则
1.2 基本性质
-
行列互换,行列式的值不变: ∣ A ∣ = ∣ A T ∣ |A|=|A^T| ∣A∣=∣AT∣。
-
某一行(或某一列)有公因数 k k k,可把 k k k提出。推论:若某一行元素全为0,则 ∣ A ∣ = 0 |A|=0 ∣A∣=0。
-
交换两行(或两列),行列式变号。推论:两行(或两列)相同(或成比例),则 ∣ A ∣ = 0 |A|=0 ∣A∣=0。
-
∣ a 11 0 ⋯ 0 0 a 22 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ a n n ∣ = a 11 a 22 ⋯ a n n \begin{vmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix}= a_{11} a_{22} \cdots a_{nn} a110⋮00a22⋮0⋯⋯⋱⋯00⋮ann =a11a22⋯ann
-
∣ A B ∣ = ∣ A ∣ ∣ B ∣ |AB|= |A||B| ∣AB∣=∣A∣∣B∣
-
某一行(或某一列) 所有元素都是两个数的和,则可把行列式写成两个行列式之和。注意: n n n阶行列式如果 每行(或每列) 都是两个数的和,则应写成 2 n 2^n 2n个 n n n阶行列式的和。
-
某行的 k k k倍加到另一行,行列式的值不变。
1.3 余子式 M i j M_{ij} Mij
余子式是从一个 n × n n \times n n×n矩阵中,删除某一行和某一列后得到的 ( n − 1 ) × ( n − 1 ) (n-1) \times (n-1) (n−1)×(n−1)矩阵的行列式。
定义:
对于一个矩阵
A
A
A的元素
a
i
j
a_{ij}
aij,其对应的余子式
M
i
j
M_{ij}
Mij是指从矩阵
A
A
A中删除第
i
i
i行和第
j
j
j列后得到的子矩阵的行列式。
1.4 代数余子式 A i j = ( − 1 ) i + j ⋅ M i j A_{ij} = (-1)^{i+j} \cdot M_{ij} Aij=(−1)i+j⋅Mij
代数余子式是余子式的带符号版本,用于行列式的展开。具体来说,代数余子式 A i j A_{ij} Aij定义为:
A
i
j
=
(
−
1
)
i
+
j
⋅
M
i
j
A_{ij} = (-1)^{i+j} \cdot M_{ij}
Aij=(−1)i+j⋅Mij
∣
A
∣
=
∑
j
=
1
n
a
i
j
A
i
j
=
∑
i
=
1
n
a
i
j
A
i
j
|A|=\sum_{j=1}^na_{ij}A_{ij}=\sum_{i=1}^na_{ij}A_{ij}
∣A∣=j=1∑naijAij=i=1∑naijAij
注意:代数余子式
A
i
j
A_{ij}
Aij就是伴随矩阵
A
∗
A^*
A∗的矩阵系数
A
∗
=
(
A
11
A
21
⋯
A
n
1
A
12
A
22
⋯
A
n
2
⋮
⋮
⋱
⋮
A
1
n
A
2
n
⋯
A
n
n
)
A^* = \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix}
A∗=
A11A12⋮A1nA21A22⋮A2n⋯⋯⋱⋯An1An2⋮Ann
1.5 具体型行列式计算(化为基本型)
1.5.1 主对角线行列式:主对角元素相乘
1.5.2 副对角线行列式:副对角元素相乘并判断正负号
1.5.3 拉普拉斯展开式
1.5.4 范德蒙德行列式:只看第二行,右减左,全都减,减完乘起来
1.5.5 加边法:没有明显的公共规律,自己补一个公共规律
1.5.6 递推法(适用于计算异爪型行列式):高阶→低阶
建立两阶或三阶之间的关系,且每阶的元素分布规律必须相同
1.5.7 数学归纳法(适用于证明题):低阶→高阶
- 第一数学归纳法(验证1个):验证 n = 1 n=1 n=1时成立,再假设 n = k ( k ≥ 2 ) n=k(k≥2) n=k(k≥2)时成立,最后证明 n = k + 1 n=k+1 n=k+1时成立,由此推出对任意 n n n成立
- 第二数学归纳法(验证2个):验证 n = 1 , n = 2 n=1,n=2 n=1,n=2时成立,再假设 n < k n<k n<k时成立,最后证明 n = k n=k n=k时成立,由此推出对任意 n n n成立
用数学归纳法证爪型行列式通式:
- n = 1 n=1 n=1
- n = 2 n=2 n=2
- 假设 n < k n<k n<k时成立
- 当 n = k n=k n=k时,按第一列展开得通式形式
- 得证
1.5.8 一些处理手段
1.6 抽象型行列式的计算: a i j a_{ij} aij未给出
1.6.1 用行列式性质
1.6.2 用矩阵知识
1.6.3 用相似理论
2 矩阵
2.1 转置、逆、伴随的一些关系式
2.2 求 A n A^n An
2.2.1 A为方阵,且r(A)=1
2.2.2 试算 A 2 A^2 A2(或 A 3 A^3 A3),找规律【归纳法→探索、研究精神!】
2.2.3 A=B+C用二项展开式
2.2.4 用相似理论
2.3 矩阵的伴随
给定一个方阵 A A A,如果 A A A 的每行元素之和为零,那么可以推出 A A A 的伴随矩阵 A ∗ A^* A∗ 的每列元素相等
求法
简单一点求矩阵的伴随,进而用伴随来求矩阵的逆
2.4 矩阵的逆
2.5 矩阵的转置
2.6 初等矩阵(左行右列)
2.7 分块矩阵
2.8 矩阵方程(含未知矩阵X)
2.9 矩阵方程求解
2.10 秩
矩阵的秩是其行秩和列秩的值,而行秩与列秩总是相等的。秩决定了矩阵的行向量或列向量的线性独立性,也影响了线性方程组的解的情况(如是否有解以及解的数量)
在两个向量组中,被表示的向量组的秩不大于表示它的向量组的秩。(即:两向量组中,被表示的向量组的秩不大)
2.11 行向量组等价(两方程组同解问题)
两个行向量组 等价,当且仅当它们能通过一系列初等行变换相互转换。
具体解释
- 如果矩阵 A A A 和矩阵 B B B 的行向量组等价,这意味着可以通过对 A A A 进行有限次初等行变换,得到 B B B。反之亦然。换句话说, A A A 和 B B B 具有相同的行空间,它们的行向量可以通过相同的线性组合生成。
2.12 向量组等价与矩阵等价的区别
向量组
(
Ⅰ
)
与
(
Ⅱ
)
等价的充要条件是
(
Ⅰ
)
与
(
Ⅱ
)
可互相线性表出
向量组(Ⅰ)与(Ⅱ)等价的充要条件是(Ⅰ)与(Ⅱ)可互相线性表出
向量组(Ⅰ)与(Ⅱ)等价的充要条件是(Ⅰ)与(Ⅱ)可互相线性表出
矩阵
A
与
B
等价的充要条件是
r
(
A
)
=
r
(
B
)
矩阵A与B等价的充要条件是r(A)=r(B)
矩阵A与B等价的充要条件是r(A)=r(B)
2.13 维数与向量的关系
-
维数
- 维数 指的是向量中元素的个数。在矩阵中,维数通常指的是向量所在空间的维度。例如,一个在 R m \mathbb{R}^m Rm 空间中的向量有 m m m 个元素。
- 对于一个线性方程组来说,维数 指的是系数矩阵的行数,也是方程的个数。
-
向量个数
- 向量个数 指的是列向量的个数,通常是系数矩阵的列数,也代表方程中未知数的个数。
-
线性相关性
- 如果矩阵的列数大于行数(向量个数 > 维数),则这些列向量必定线性相关。
假设有一个矩阵 A A A 为 3 × 4 3 \times 4 3×4 矩阵( 3 3 3 行, 4 4 4 列):
- 向量的维数是 3 3 3,因为每个列向量有 3 3 3 个元素。
- 向量的个数是 4 4 4,因为矩阵有 4 4 4 列。
- 因为 4 > 3 4 > 3 4>3,根据线性代数定理, A A A 的列向量必定是线性相关的。
3 齐次线性方程组
4 非齐次线性方程组
5 公共解问题
6 同解问题
- 行向量组等价是两个方程组同解的充要条件。如果两个线性方程组的增广矩阵的行向量组是等价的(即通过初等行变换可以互相转换),那么这两个方程组一定有相同的解集。这是因为初等行变换不会改变线性方程组的解。
- 如果矩阵 A A A 和 B B B 行等价,则存在一个可逆矩阵 P P P 使得 P A = B PA = B PA=B 。这表明可以通过对 A A A 进行初等行变换得到 B B B,而这些初等行变换可以表示为一个可逆矩阵 P P P 作用在 A A A 上。
- 一个行向量代表一个方程,行向量组的一次初等行变换相当于对方程组做了一次同解变形。由于初等行变换不会改变线性方程组的解集,所以两个增广矩阵行向量组等价,意味着它们对应的方程组有相同的解。
- 列向量的关系则与方程组是否有解密切相关。
- 若两个方程组互为线性组合,则两个方程组等价。等价的两个方程组一定同解,但同解的两个方程组不一定等价。
7 抽象型方程组
7.1 矩阵A各行元素之和均为0
7.2 方程组解的个数与秩的关系
7.3 选择题常考
7.4 证线性无关
7.5 证线性相关
要证线性相关,那么只需要证得有一个系数不为0就能使等式成立即可。
7.6 线性方程组的几何意义
有解情况
\mathbf{有解情况}
有解情况
几何意义 | 代数表达 |
---|---|
三平面相交于一点(唯一解) | r ( A ) = r ( A ‾ ) = 3 r(A)=r(\overline{A})=3 r(A)=r(A)=3法向量两两正交 |
三平面相交于一条线 | r ( A ) = r ( A ‾ ) = 2 r(A)=r(\overline{A})=2 r(A)=r(A)=2且 β 1 , β 2 , β 3 β_1,β_2,β_3 β1,β2,β3两两线性无关(任何两面都不重合) |
两平面重合,第三平面与之相交 | r ( A ) = r ( A ‾ ) = 2 r(A)=r(\overline{A})=2 r(A)=r(A)=2且 β 1 , β 2 , β 3 β_1,β_2,β_3 β1,β2,β3中有两个向量线性相关(存在两个面重合) |
三平面重合 | r ( A ) = r ( A ‾ ) = 1 r(A)=r(\overline{A})=1 r(A)=r(A)=1 |
如果三个平面的法向量两两正交,那么对应的线性方程组有唯一解;若此时引入第四个平面,当且仅当第四个平面与前三个平面相交于同一个点时,方程组有唯一解,除此之外无解。
无解情况 \mathbf{无解情况} 无解情况
几何意义 | 代数表达 |
---|---|
三平面两两 相交 \mathbf{相交} 相交,且交线相互平行 | r ( A ) = 2 , r ( A ‾ ) = 3 r(A)=2,r(\overline{A})=3 r(A)=2,r(A)=3且 n 1 , n 2 , n 3 n_1,n_2,n_3 n1,n2,n3两两线性无关(任何两个面都不相交) |
两平面平行,第三张平面与它们 相交 \mathbf{相交} 相交 | r ( A ) = 2 , r ( A ‾ ) = 3 r(A)=2,r(\overline{A})=3 r(A)=2,r(A)=3且 n 1 , n 2 , n 3 n_1,n_2,n_3 n1,n2,n3中有两个向量线性相关(存在两个面平行但不重合) |
三张平面相互平行但不重合 | r ( A ) = 1 , r ( A ‾ ) = 2 r(A)=1,r(\overline{A})=2 r(A)=1,r(A)=2且 β 1 , β 2 , β 3 β_1,β_2,β_3 β1,β2,β3两两线性无关(任何两个面都不重合) |
两张平面重合,第三张平面与它们平行但不重合 | r ( A ) = 1 , r ( A ‾ ) = 2 r(A)=1,r(\overline{A})=2 r(A)=1,r(A)=2且 β 1 , β 2 , β 3 β_1,β_2,β_3 β1,β2,β3中有两个向量线性相关(存在两个面重合) |
7.7 线性表出
8 向量空间
8.1 向量空间中的坐标
题型1:要求一个非零向量
b
\mathbf{b}
b,使得它在两个不同基
{
a
1
,
a
2
,
a
3
}
\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}
{a1,a2,a3} 和
{
β
1
,
β
2
,
β
3
}
\{\mathbf{β}_1, \mathbf{β}_2, \mathbf{β}_3\}
{β1,β2,β3} 下的坐标相同。设
b
\mathbf{b}
b 在这两个基下的坐标为
(
x
1
,
x
2
,
x
3
)
(x_1, x_2, x_3)
(x1,x2,x3),即:
b
=
x
1
a
1
+
x
2
a
2
+
x
3
a
3
\mathbf{b} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + x_3\mathbf{a}_3
b=x1a1+x2a2+x3a3
b
=
x
1
β
1
+
x
2
β
2
+
x
3
β
3
\mathbf{b} = x_1\mathbf{β}_1 + x_2\mathbf{β}_2 + x_3\mathbf{β}_3
b=x1β1+x2β2+x3β3
两式相减,得到
x
1
(
a
1
−
β
1
)
+
x
2
(
a
2
−
β
2
)
+
x
3
(
a
3
−
β
3
)
=
0
x_1(\mathbf{a}_1 - \mathbf{β}_1) + x_2(\mathbf{a}_2 - \mathbf{β}_2) + x_3(\mathbf{a}_3 - \mathbf{β}_3) = 0
x1(a1−β1)+x2(a2−β2)+x3(a3−β3)=0
为了满足上述等式,并且因为
b
\mathbf{b}
b 是非零向量,所以
x
1
,
x
2
,
x
3
x_1, x_2, x_3
x1,x2,x3 至少有一个不为零。这表明
a
1
−
β
1
\mathbf{a}_1 - \mathbf{β}_1
a1−β1,
a
2
−
β
2
\mathbf{a}_2 - \mathbf{β}_2
a2−β2,
a
3
−
β
3
\mathbf{a}_3 - \mathbf{β}_3
a3−β3 必须是线性相关的。
解齐次方程组
(
a
1
−
β
1
a
2
−
β
2
a
3
−
β
3
)
(
x
1
x
2
x
3
)
=
(
0
0
0
)
\begin{pmatrix} \mathbf{a}_1 - \mathbf{β}_1 & \mathbf{a}_2 - \mathbf{β}_2 & \mathbf{a}_3 - \mathbf{β}_3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}= \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
(a1−β1a2−β2a3−β3)
x1x2x3
=
000
得解坐标
x
1
,
x
2
,
x
3
x_1, x_2, x_3
x1,x2,x3,从而得到向量
b
\mathbf{b}
b:
b
=
x
1
a
1
+
x
2
a
2
+
x
3
a
3
\mathbf{b} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + x_3\mathbf{a}_3
b=x1a1+x2a2+x3a3
8.2 过渡矩阵
8.3 坐标变换
9 特征值特征向量
注意:方程组可以有零解,但特征向量决不能是零向量!
注意:方程组可以有零解,但特征向量决不能是零向量!
注意:方程组可以有零解,但特征向量决不能是零向量!
A
∗
、
A
k
(
k
≠
−
1
)
的特征向量不一定是
A
的特征向量
\boldsymbol{A^*}、\boldsymbol{A^k}(k≠-1)的特征向量不一定是\boldsymbol{A}的特征向量
A∗、Ak(k=−1)的特征向量不一定是A的特征向量
A
−
1
、
k
A
(
k
≠
0
)
的特征向量一定是
A
的特征向量
\boldsymbol{A^{-1}}、\boldsymbol{kA}(k≠0)的特征向量一定是\boldsymbol{A}的特征向量
A−1、kA(k=0)的特征向量一定是A的特征向量
矩阵 | 特征值 | 对应特征向量 |
---|---|---|
A \boldsymbol{A} A | λ \boldsymbol{λ} λ | α \boldsymbol{α} α |
A T \boldsymbol{A^T} AT | λ \boldsymbol{λ} λ | 重新计算 \boldsymbol{重新计算} 重新计算 |
将 A 对称化得到 B = A + A T 2 \boldsymbol{将A对称化得到B=\frac{A+A^T}{2}} 将A对称化得到B=2A+AT | 重新计算 \boldsymbol{重新计算} 重新计算 | 重新计算 \boldsymbol{重新计算} 重新计算 |
k A \boldsymbol{kA} kA | k λ \boldsymbol{kλ} kλ | α \boldsymbol{α} α |
A k \boldsymbol{A^k} Ak | λ k \boldsymbol{λ^k} λk | α \boldsymbol{α} α |
f ( A ) \boldsymbol{f(A)} f(A) | f ( λ ) \boldsymbol{f(λ)} f(λ) | α \boldsymbol{α} α |
A − 1 \boldsymbol{A^{-1}} A−1 | 1 λ \boldsymbol{\frac{1}{λ}} λ1 | α \boldsymbol{α} α |
A ∗ \boldsymbol{A^*} A∗ | ∣ A ∣ λ \boldsymbol{\frac{|A|}{λ}} λ∣A∣ | α \boldsymbol{α} α |
P − 1 A P = B \boldsymbol{P^{-1}AP=B} P−1AP=B | λ \boldsymbol{λ} λ | P − 1 α \boldsymbol{P^{-1}α} P−1α |
P − 1 f ( A ) P = f ( B ) \boldsymbol{P^{-1}f(A)P=f(B)} P−1f(A)P=f(B) | f ( λ ) \boldsymbol{f(λ)} f(λ) | P − 1 α \boldsymbol{P^{-1}α} P−1α |
(说法三)
A
A
A的任意两个特征向量都线性相关,说明特征向量都属于同一个特征值,故
A
A
A有一个三重特征
λ
λ
λ
15、设 A A A 是一个 3 × 3 3 \times 3 3×3 矩阵,那么它的特征多项式 ∣ λ E − A ∣ |\lambda E - A| ∣λE−A∣ 可以写为: ∣ λ E − A ∣ = λ 3 − tr ( A ) ⋅ λ 2 + c λ − det ( A ) |\lambda E - A| = \lambda^3 - \text{tr}(A) \cdot \lambda^2 + c \lambda - \det(A) ∣λE−A∣=λ3−tr(A)⋅λ2+cλ−det(A)
- 其中, c c c 是 A A A 主对角元素的代数余子式的和。
9.1 施密特正交化
施密特正交化是一种将一组线性无关向量转化为一组正交向量的算法,其核心思想是利用投影去除向量间的相关成分。
假设我们有一组线性无关向量 { v 1 , v 2 , … , v n } \{ \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \} {v1,v2,…,vn},通过施密特正交化,可以得到一组正交向量 { u 1 , u 2 , … , u n } \{ \mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n \} {u1,u2,…,un},使得每个向量都与之前的向量正交。
施密特正交化的公式为:
u 1 = v 1 \mathbf{u}_1 = \mathbf{v}_1 u1=v1
u 2 = v 2 − ⟨ v 2 , u 1 ⟩ ⟨ u 1 , u 1 ⟩ u 1 \mathbf{u}_2 = \mathbf{v}_2 - \frac{\langle \mathbf{v}_2, \mathbf{u}_1 \rangle}{\langle \mathbf{u}_1, \mathbf{u}_1 \rangle} \mathbf{u}_1 u2=v2−⟨u1,u1⟩⟨v2,u1⟩u1
u 3 = v 3 − ⟨ v 3 , u 1 ⟩ ⟨ u 1 , u 1 ⟩ u 1 − ⟨ v 3 , u 2 ⟩ ⟨ u 2 , u 2 ⟩ u 2 \mathbf{u}_3 = \mathbf{v}_3 - \frac{\langle \mathbf{v}_3, \mathbf{u}_1 \rangle}{\langle \mathbf{u}_1, \mathbf{u}_1 \rangle} \mathbf{u}_1 - \frac{\langle \mathbf{v}_3, \mathbf{u}_2 \rangle}{\langle \mathbf{u}_2, \mathbf{u}_2 \rangle} \mathbf{u}_2 u3=v3−⟨u1,u1⟩⟨v3,u1⟩u1−⟨u2,u2⟩⟨v3,u2⟩u2
以此类推,对于第 k k k 个向量:
u k = v k − ∑ i = 1 k − 1 ⟨ v k , u i ⟩ ⟨ u i , u i ⟩ u i \mathbf{u}_k = \mathbf{v}_k - \sum_{i=1}^{k-1} \frac{\langle \mathbf{v}_k, \mathbf{u}_i \rangle}{\langle \mathbf{u}_i, \mathbf{u}_i \rangle} \mathbf{u}_i uk=vk−i=1∑k−1⟨ui,ui⟩⟨vk,ui⟩ui
其中, ⟨ a , b ⟩ \langle \mathbf{a}, \mathbf{b} \rangle ⟨a,b⟩ 表示向量 a \mathbf{a} a 和 b \mathbf{b} b 的内积。
这个过程会保证生成的向量 { u 1 , u 2 , … , u n } \{ \mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n \} {u1,u2,…,un} 是两两正交的。
9.2 用特征值和特征向量求A
10 相似
10.1 相似的五个性质
10.2 相似的结论
10.3 相似对角化
11 实对称矩阵(必能相似对角化)
如果矩阵
A
A
A 不是实对称矩阵,则不同特征值对应的特征向量不一定相互正交。
12 正交矩阵
13 二次型
13.1 惯性定理
13.2 配方法
13.3 正交变换法
13.3.1 常规计算
13.3.2 反求参数,A或(f)
13.3.3 最值问题
13.3.4 几何应用
二次曲面 f = x T A x = 1 f=x^TAx=1 f=xTAx=1的类型
λ 1 , λ 2 , λ 3 的符号 λ_1,λ_2,λ_3的符号 λ1,λ2,λ3的符号 | f ( x 1 , x 2 , x 3 ) = 1 f(x_1,x_2,x_3)=1 f(x1,x2,x3)=1 |
---|---|
3正 | 椭球面 |
2正1负 | 单页双曲面 |
1正2负 | 双叶双曲面 f = 0 时为锥面 f=0时为锥面 f=0时为锥面 |
2正1零 | 椭圆柱面 |
1正1负1零 | 双曲柱面 |
14 合同
对于任意的 n × n n \times n n×n 矩阵 A A A 和 B B B,如果存在一个可逆矩阵 C C C 使得:
C T A C = B C^TAC = B CTAC=B
则称矩阵 A A A 和 B B B 是合同矩阵,并且这个变换叫做合同变换。
变换特点
-
行列同步:合同变换中的行变换和列变换可同步进行。
-
不改变矩阵的秩:合同变换保持矩阵的秩。
-
二次型化简:合同变换常用于二次型的化简,使得原矩阵的结构得到简化,同时保持二次型的性质。
14.1 实对称矩阵的合同
两个实对称矩阵 A A A 和 B B B 如果是合同的,即存在一个可逆矩阵 C C C 使得 C T A C = B C^TAC = B CTAC=B,那么它们的惯性指数(正惯性指数、负惯性指数和零惯性指数的个数)必须相同。
15 正定二次型(正定矩阵)
正定矩阵:
- 定义:正定矩阵是一个对称矩阵,并且对于任意非零向量 x \mathbf{x} x,有 x T A x > 0 \mathbf{x}^T A \mathbf{x} > 0 xTAx>0。
- 性质:正定矩阵的特征值都是正数,通常用于优化问题,表示能量最小化等场景。能量最小化通常与目标函数的最小化相关联。比如在机器学习中的损失函数或在经济学中的成本函数,这些函数的最小值往往代表最佳解。正定矩阵在这种场景中非常重要,因为它对应的二次型函数如果是正定的,那么优化问题的目标函数就有一个唯一的最小值。这个最小值就是能量最小化的解。
二次型矩阵:
- 定义:二次型矩阵是描述二次型函数的对称矩阵,形式为 f = x T A x f= \mathbf{x}^T A \mathbf{x} f=xTAx,其中 A A A 是对称矩阵。
- 性质:二次型矩阵可以是正定的、半正定的、负定的或不定的,具体取决于函数 f f f 的符号情况。
两者的区别:
- 范围不同:正定矩阵是特定类型的二次型矩阵,即二次型矩阵中的一种特殊情况。
- 判别标准:正定矩阵要求对于所有非零向量 x \mathbf{x} x, x T A x \mathbf{x}^T A \mathbf{x} xTAx 必须大于零;而二次型矩阵可以根据其对应二次型的符号不同,具有不同的性质。
16 反对称矩阵
反对称矩阵(也称为斜对称矩阵)是一类特殊的矩阵,其定义是矩阵的转置等于其负矩阵,即对于矩阵 ( A ) 来说,反对称条件为:
A T = − A A^T = -A AT=−A
具体来说,矩阵中的元素满足:
a
i
j
=
−
a
j
i
a_{ij} = -a_{ji}
aij=−aji
这意味着矩阵的对角线元素必须为零(即
a
i
i
=
0
a_{ii} = 0
aii=0),因为
a
i
i
=
−
a
i
i
a_{ii} = -a_{ii}
aii=−aii,这只有在
a
i
i
=
0
a_{ii} = 0
aii=0 时成立。例如:一个
3
×
3
3×3
3×3 的反对称矩阵为:
A
=
(
0
a
12
a
13
−
a
12
0
a
23
−
a
13
−
a
23
0
)
A = \begin{pmatrix} 0 & a_{12} & a_{13} \\ -a_{12} & 0 & a_{23} \\ -a_{13} & -a_{23} & 0 \end{pmatrix}
A=
0−a12−a13a120−a23a13a230
反对称矩阵的性质:
- 对角线元素为零:反对称矩阵的对角线元素必须为零。
- 特征值性质:反对称矩阵的特征值要么是零,要么是纯虚数(对于实数反对称矩阵)。
- 奇数维度的行列式为零:如果反对称矩阵的维度是奇数,那么其行列式为零。这是因为反对称矩阵在奇数维度下的非零特征值成对出现,每对特征值互为相反数,导致行列式为零。
若 n n n阶方阵 A A A可逆,且满足 A T = − A A^T=-A AT=−A,则满足
- 任取列向量 b ∈ R n , b T A b = 0 b∈R^n,b^TAb=0 b∈Rn,bTAb=0
- 任取列向量 b ∈ R n , b T A − 1 b = 0 b∈R^n,b^TA^{-1}b=0 b∈Rn,bTA−1b=0
- n n n绝不可能为奇数