线性代数基础知识整理
行列式
上(下)三角行列式
∣ a 11 0 ⋯ 0 0 a 22 ⋯ 0 ⋮ ⋮ ⋮ 0 0 ⋯ a n n ∣ = ∏ i = 1 n a i i \left|\begin{array}{cccc}a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{n n}\end{array}\right|=\prod_{i=1}^{n} a_{i i} ∣∣∣∣∣∣∣∣∣a110⋮00a22⋮0⋯⋯⋯00⋮ann∣∣∣∣∣∣∣∣∣=∏i=1naii
副对角线行列式
∣ 0 ⋯ 0 a 1 , n 0 ⋯ a 2 , n − 1 0 ⋮ ⋮ ⋮ a n 1 ⋯ 0 0 ∣ \left|\begin{array}{cccc}0 & \cdots & 0 & a_{1, n} \\ 0 & \cdots & a_{2, n-1} & 0 \\ \vdots & & \vdots & \vdots \\ a_{n 1} & \cdots & 0 & 0\end{array}\right| ∣∣∣∣∣∣∣∣∣00⋮an1⋯⋯⋯0a2,n−1⋮0a1,n0⋮0∣∣∣∣∣∣∣∣∣
= ( − 1 ) n ( n − 1 ) 2 a 1 n a 2 , n − 1 … a n =(-1)^{\frac{n(n-1)}{2}} a_{1 n} a_{2, n-1} \ldots a_{n} =(−1)2n(n−1)a1na2,n−1…an
特殊拉普拉斯展开式
∣ A m × m O O B n × n ∣ = ∣ A C O B ∣ \left|\begin{array}{cc}A_{m \times m} & O \\ O & B_{n \times n}\end{array}\right|=\left|\begin{array}{cc}A & C \\ O & B\end{array}\right| ∣∣∣∣Am×mOOBn×n∣∣∣∣=∣∣∣∣AOCB∣∣∣∣
= ∣ A O C B ∣ = ∣ A ∣ ∣ B ∣ =\left|\begin{array}{ll}A & O \\ C & B\end{array}\right|=|A||B| =∣∣∣∣ACOB∣∣∣∣=∣A∣∣B∣
范德蒙德行列式
∣ O A m × m B n × n O ∣ = ∣ C A B O ∣ \left|\begin{array}{cc}O & A_{m \times m} \\ B_{n \times n} & O\end{array}\right|=\left|\begin{array}{cc}C & A \\ B & O\end{array}\right| ∣∣∣∣OBn×nAm×mO∣∣∣∣=∣∣∣∣CBAO∣∣∣∣
= ∣ O A B C ∣ = ( − 1 ) m n ∣ A ∣ ∣ B ∣ =\left|\begin{array}{cc}O & A \\ B & C\end{array}\right|=(-1)^{m n}|A||B| =∣∣∣∣