第二篇:关键点检测的两类方法及区别(短文)

本文介绍了关键点检测的两种主要方法:全连接层直接回归坐标和通过高斯热图定位。全连接层方法虽然端到端训练速度快,但损害空间泛化能力;而高斯热图方法利用相关性和对比关系,提高了网络学习效率和空间泛化性能。目前,单人姿势估计通常采用后者作为基础流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

关键点检测任务可以看成是一个标准的回归任务。具体来说目前主流的关键点回归就两种做法:

  • 方法一:用全连接层直接回归坐标点,比如k个点同时检测,那就是2k个输出神经元Human keypoints任务最开始应用CNN就是这种方法。该方法的优点是可以端到端训练,并且训练和推理的速度很快。缺点是极大损害空间泛化能力(下面会细说)。相比于方法二,方法一是一种更难学习的监督方式,网络需要自行将空间位置转换为坐标。
  • 方法二:先生成高斯热图,再通过argmax找出坐标点。比如要回归17个关键点,那么预测输出特征图是Batch,H, W, 17),即每个通道都是预测一个关节点的热图,然后对每个通道进行argmax即可得到整数型坐标。构造heatmap实
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

刚哥吧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值