Stable Diffusion 系列教程 - 5 ControlNet

ControlNet是一种针对大模型微调的网络,解决了扩散模型生成的随机性问题,为AI绘画提供明确指导。它包括Annotator和Diffusion两个部分,通过额外信息控制生成过程。本文还介绍了模型下载和配置要求。尽管ControlNet是AI艺术创作中的重要环节,但它并非孤立,还需结合其他技术如提示词、LoRA等实现AIGC。
摘要由CSDN通过智能技术生成

ControlNet和LORA的定位都是对大模型做微调的额外网络。作为入门SD的最后一块拼图是必须要去了解和开发的。为什么ControlNet的影响力如此的大?在它之前,基于扩散模型的AIGC是非常难以控制的,扩散整张图像的过程充满了随机性。这种随机性并不会影响到日常的自娱自乐,但一些真正面对具体需求的岗位则无法忍受这种抽卡式的尝试。ControlNet的核心是基于一些额外输入的信息来给扩散模型的生成提供明确的指引,整个过程分为Annotator和Diffusion。Annotator(预处理器/注释器):从图片中提取对ControlNet有用的额外信息。Diffusion:根据这些额外信息控制扩散生成的走向,在ControlNet的指导下生成图像作品。

单个ControlNet的大小在1.4G左右,上面为五个应用最为广泛的控制模型。模型的名命规则:v11代表版本为1.1 ,p代表在生产环境下可以直接使用,sd15代表底模Stable Diffusion的版本:

模型的下载路径为:lllyasviel/ControlNet-v1-1 at main (huggingface.co) 。这里可以下载我们想用的所有模型,但是切记要把yaml文件也下载下来,其用来定义模型的配置。将成对的模型文件放在目录stable_diffusion\sd-webui-aki-v4.2-XXEY\extensions\sd-webui-controlnet\models下。注意:老版本没有yaml文件,新版本的模型有yaml文件,如果不下载就用不了这个模型。

需要注意的是: ControINet之于整个AI绘画过程,其实也就是诸多环节里面的“一环"而已。AI还是会综合参考提示词、图生图、Embeddings、LoRA等各个方面的东西来综合的实现AIGC。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

刚哥吧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值